{"title":"Targeted Near-Infrared Fluorescence Imaging of Liver Cancer using Dual-Peptide-Functionalized Albumin Particles","authors":"Wei-Tao Dou, Chen Guo, Ling Zhu, Peng Qiu, Weijuan Kan, Yu-Fei Pan, Yi Zang, Li-Wei Dong, Jia Li*, Ye-Xiong Tan*, Hong-Yang Wang* and Xiao-Peng He*, ","doi":"10.1021/cbmi.3c00078","DOIUrl":null,"url":null,"abstract":"<p >Fluorescence imaging is an emerging strategy for preoperative diagnosis and intraoperative resection. In particular, owing to their outstanding spatial resolution and deep-tissue penetration, imaging agents in the near-infrared (NIR)-II window (1000–1700 nm) have received intensive interest for biomedical applications. However, NIR II-based imaging agents for targeted visualization of hepatocellular carcinoma (HCC) have barely been barely developed. Here, we report the construction of structurally uniform, biocompatible human serum albumin (HSA)-based particles orthogonally modified with two functional peptides as a carrier for the delivery of NIR-II imaging agents to HCC cell-derived solid tumor <i>in vivo</i>. Cysteine conjugation combined with host–guest chemistry enables the orthogonal introduction of two functionally independent peptides to HSA-based nanoparticles. One of these peptides targets glypican-3 (GPC-3), a specific biomarker of HCC, and the other facilitates the escape of the nanoparticles from macrophagic phagocytosis. Series of cellular and <i>in vivo</i> assays were carried out to demonstrate the efficacy of the dual-peptide-functionalized HSA nanoparticles for targeted NIR-II fluorescence imaging of HCC.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 1","pages":"47–55"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence imaging is an emerging strategy for preoperative diagnosis and intraoperative resection. In particular, owing to their outstanding spatial resolution and deep-tissue penetration, imaging agents in the near-infrared (NIR)-II window (1000–1700 nm) have received intensive interest for biomedical applications. However, NIR II-based imaging agents for targeted visualization of hepatocellular carcinoma (HCC) have barely been barely developed. Here, we report the construction of structurally uniform, biocompatible human serum albumin (HSA)-based particles orthogonally modified with two functional peptides as a carrier for the delivery of NIR-II imaging agents to HCC cell-derived solid tumor in vivo. Cysteine conjugation combined with host–guest chemistry enables the orthogonal introduction of two functionally independent peptides to HSA-based nanoparticles. One of these peptides targets glypican-3 (GPC-3), a specific biomarker of HCC, and the other facilitates the escape of the nanoparticles from macrophagic phagocytosis. Series of cellular and in vivo assays were carried out to demonstrate the efficacy of the dual-peptide-functionalized HSA nanoparticles for targeted NIR-II fluorescence imaging of HCC.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging