Emergent local structures in an ecosystem of social bots and humans on Twitter

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdullah Alrhmoun, János Kertész
{"title":"Emergent local structures in an ecosystem of social bots and humans on Twitter","authors":"Abdullah Alrhmoun, János Kertész","doi":"10.1140/epjds/s13688-023-00406-5","DOIUrl":null,"url":null,"abstract":"Abstract Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"58 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-023-00406-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.

Abstract Image

推特上的社交机器人和人类组成的生态系统中的新兴地方结构
在线社交网络中的机器人可以用于好的或坏的,但它们的存在是不可避免的,并将在未来增加。为了研究机器人和人类的交互网络是如何进化的,我们在Twitter上创建了六个带有人工智能语言模型的社交机器人,并让它们执行标准的用户操作。机器人采用了三种不同的策略:趋势目标策略(TTS),关键词目标策略(KTS)和用户目标策略(UTS)。我们研究了交互模式,如定位用户、传播信息、传播关系和参与度。我们专注于新兴的局部结构或主题,发现社交机器人的策略对它们有重大影响。与遵循TTS或KTS的机器人交互产生的基序很简单,并且显示出显著的重叠,而与由uts控制的机器人交互产生的基序则更复杂。这些发现为在线社交网络中的人机交互模式提供了见解,并可用于开发更有效的机器人,以执行有益的任务并打击恶意行为者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信