{"title":"Forecasting Chinese carbon emission intensity based on the interactive effect GM(1,N) power model","authors":"Yuhong Wang, Qi Si","doi":"10.1108/gs-02-2023-0015","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to predict China's carbon emission intensity and put forward a set of policy recommendations for further development of a low-carbon economy in China. Design/methodology/approach In this paper, the Interaction Effect Grey Power Model of N Variables (IEGPM(1,N)) is developed, and the Dragonfly algorithm (DA) is used to select the best power index for the model. Specific model construction methods and rigorous mathematical proofs are given. In order to verify the applicability and validity, this paper compares the model with the traditional grey model and simulates the carbon emission intensity of China from 2014 to 2021. In addition, the new model is used to predict the carbon emission intensity of China from 2022 to 2025, which can provide a reference for the 14th Five-Year Plan to develop a scientific emission reduction path. Findings The results show that if the Chinese government does not take effective policy measures in the future, carbon emission intensity will not achieve the set goals. The IEGPM(1,N) model also provides reliable results and works well in simulation and prediction. Originality/value The paper considers the nonlinear and interactive effect of input variables in the system's behavior and proposes an improved grey multivariable model, which fills the gap in previous studies.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"23 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gs-02-2023-0015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This study aims to predict China's carbon emission intensity and put forward a set of policy recommendations for further development of a low-carbon economy in China. Design/methodology/approach In this paper, the Interaction Effect Grey Power Model of N Variables (IEGPM(1,N)) is developed, and the Dragonfly algorithm (DA) is used to select the best power index for the model. Specific model construction methods and rigorous mathematical proofs are given. In order to verify the applicability and validity, this paper compares the model with the traditional grey model and simulates the carbon emission intensity of China from 2014 to 2021. In addition, the new model is used to predict the carbon emission intensity of China from 2022 to 2025, which can provide a reference for the 14th Five-Year Plan to develop a scientific emission reduction path. Findings The results show that if the Chinese government does not take effective policy measures in the future, carbon emission intensity will not achieve the set goals. The IEGPM(1,N) model also provides reliable results and works well in simulation and prediction. Originality/value The paper considers the nonlinear and interactive effect of input variables in the system's behavior and proposes an improved grey multivariable model, which fills the gap in previous studies.