{"title":"Hyperbolic manifolds with a large number of systoles","authors":"Cayo Dória, Emanoel Freire, Plinio Murillo","doi":"10.1090/tran/9049","DOIUrl":null,"url":null,"abstract":"In this article, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a sequence of compact hyperbolic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace upper M Subscript i Baseline right-brace\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\{M_i\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with number of systoles at least as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript 1 plus StartFraction 1 Over 3 n left-parenthesis n plus 1 right-parenthesis EndFraction minus epsilon\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">v</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {vol}(M_i)^{1+\\frac {1}{3n(n+1)}-\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In dimension 3, the bound is improved to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript four thirds minus epsilon\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">v</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {vol}(M_i)^{\\frac {4}{3}-\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results generalize previous work of Schmutz for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and Dória-Murillo for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to higher dimensions.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, for any n≥4n\geq 4 we construct a sequence of compact hyperbolic nn-manifolds {Mi}\{M_i\} with number of systoles at least as vol(Mi)1+13n(n+1)−ϵ\mathrm {vol}(M_i)^{1+\frac {1}{3n(n+1)}-\epsilon } for any ϵ>0\epsilon >0. In dimension 3, the bound is improved to vol(Mi)43−ϵ\mathrm {vol}(M_i)^{\frac {4}{3}-\epsilon }. These results generalize previous work of Schmutz for n=2n=2, and Dória-Murillo for n=3n=3 to higher dimensions.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.