Kenneth Karlsen, Michael Kunzinger, Darko Mitrovic
{"title":"A dynamic capillarity equation with stochastic forcing on manifolds: A singular limit problem","authors":"Kenneth Karlsen, Michael Kunzinger, Darko Mitrovic","doi":"10.1090/tran/9050","DOIUrl":null,"url":null,"abstract":"We consider a dynamic capillarity equation with stochastic forcing on a compact Riemannian manifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d left-parenthesis u Subscript epsilon comma delta Baseline minus delta normal upper Delta u Subscript epsilon comma delta Baseline right-parenthesis plus d i v German f Subscript epsilon Baseline left-parenthesis bold x comma u Subscript epsilon comma delta Baseline right-parenthesis d t equals epsilon normal upper Delta u Subscript epsilon comma delta Baseline d t plus normal upper Phi left-parenthesis bold x comma u Subscript epsilon comma delta Baseline right-parenthesis d upper W Subscript t Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>δ<!-- δ --></mml:mi> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>v</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">f</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} d \\left (u_{\\varepsilon ,\\delta } -\\delta \\Delta u_{\\varepsilon ,\\delta }\\right ) +div\\mathfrak {f}_{\\varepsilon }(\\mathbf {x}, u_{\\varepsilon ,\\delta })\\, dt =\\varepsilon \\Delta u_{\\varepsilon ,\\delta }\\, dt + \\Phi (\\mathbf {x}, u_{\\varepsilon ,\\delta })\\, dW_t, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German f Subscript epsilon\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">f</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {f}_{\\varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of smooth vector fields converging in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis upper M times double-struck upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^p(M\\times \\mathbb {R})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon down-arrow 0\"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=\"false\">↓<!-- ↓ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\varepsilon \\downarrow 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> towards a vector field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German f element-of upper L Superscript p Baseline left-parenthesis upper M semicolon upper C Superscript 1 Baseline left-parenthesis double-struck upper R right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">f</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {f}\\in L^p(M;C^1(\\mathbb {R}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W Subscript t\"> <mml:semantics> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">W_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Wiener process defined on a filtered probability space. First, for fixed values of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish the existence and uniqueness of weak solutions to the Cauchy problem for the above-stated equation. Assuming that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German f\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">f</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is non-degenerate and that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tend to zero with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta slash epsilon squared\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>ε<!-- ε --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\delta /\\varepsilon ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounded, we show that there exists a subsequence of solutions that strongly converges in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript omega comma t comma bold x Superscript 1\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">x</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">L^1_{\\omega ,t,\\mathbf {x}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a martingale solution of the following stochastic conservation law with discontinuous flux: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d u plus d i v German f left-parenthesis bold x comma u right-parenthesis d t equals normal upper Phi left-parenthesis u right-parenthesis d upper W Subscript t Baseline period\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>v</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">f</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} d u +div\\mathfrak {f}(\\mathbf {x}, u)\\,dt =\\Phi (u)\\, dW_t. \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> The proofs make use of Galerkin approximations, kinetic formulations as well as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-measures and new velocity averaging results for stochastic continuity equations. The analysis relies on the use of a.s. representations of random variables in some particular quasi-Polish spaces. The convergence framework developed here can be applied to other singular limit problems for stochastic conservation laws.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9050","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a dynamic capillarity equation with stochastic forcing on a compact Riemannian manifold (M,g)(M,g): d(uε,δ−δΔuε,δ)+divfε(x,uε,δ)dt=εΔuε,δdt+Φ(x,uε,δ)dWt,\begin{equation*} d \left (u_{\varepsilon ,\delta } -\delta \Delta u_{\varepsilon ,\delta }\right ) +div\mathfrak {f}_{\varepsilon }(\mathbf {x}, u_{\varepsilon ,\delta })\, dt =\varepsilon \Delta u_{\varepsilon ,\delta }\, dt + \Phi (\mathbf {x}, u_{\varepsilon ,\delta })\, dW_t, \end{equation*} where fε\mathfrak {f}_{\varepsilon } is a sequence of smooth vector fields converging in Lp(M×R)L^p(M\times \mathbb {R}) (p>2p>2) as ε↓0\varepsilon \downarrow 0 towards a vector field f∈Lp(M;C1(R))\mathfrak {f}\in L^p(M;C^1(\mathbb {R})), and WtW_t is a Wiener process defined on a filtered probability space. First, for fixed values of ε\varepsilon and δ\delta, we establish the existence and uniqueness of weak solutions to the Cauchy problem for the above-stated equation. Assuming that f\mathfrak {f} is non-degenerate and that ε\varepsilon and δ\delta tend to zero with δ/ε2\delta /\varepsilon ^2 bounded, we show that there exists a subsequence of solutions that strongly converges in Lω,t,x1L^1_{\omega ,t,\mathbf {x}} to a martingale solution of the following stochastic conservation law with discontinuous flux: du+divf(x,u)dt=Φ(u)dWt.\begin{equation*} d u +div\mathfrak {f}(\mathbf {x}, u)\,dt =\Phi (u)\, dW_t. \end{equation*} The proofs make use of Galerkin approximations, kinetic formulations as well as HH-measures and new velocity averaging results for stochastic continuity equations. The analysis relies on the use of a.s. representations of random variables in some particular quasi-Polish spaces. The convergence framework developed here can be applied to other singular limit problems for stochastic conservation laws.
考虑紧黎曼流形(M,g) (M,g) (M,g)上具有随机强迫的动态毛细性方程:d (u ε, δ−δ Δ u ε, δ) + d i v f ε (x, u ε, δ) d t = ε Δ u ε, δ d t + Φ (x, u ε, δ) d W t, \begin{equation*} d \left (u_{\varepsilon ,\delta } -\delta \Delta u_{\varepsilon ,\delta }\right ) +div\mathfrak {f}_{\varepsilon }(\mathbf {x}, u_{\varepsilon ,\delta })\, dt =\varepsilon \Delta u_{\varepsilon ,\delta }\, dt + \Phi (\mathbf {x}, u_{\varepsilon ,\delta })\, dW_t, \end{equation*}其中f ε \mathfrak f_{}{\varepsilon是收敛于L p(M × R) L^p(M}\times\mathbb R{) (p &gt;2 p&gt;2)为ε↓0 }\varepsilon\downarrow 0指向向量场f∈L p (M;c1 (R)) \mathfrak f{}\in L^p(M;C^1(\mathbb R{)), W_t W_t是定义在滤波概率空间上的Wiener过程。首先,对于ε }\varepsilon和δ \delta的定值,我们建立了上述方程Cauchy问题弱解的存在唯一性。假设f \mathfrak f{是非退化的,并且ε }\varepsilon和δ \delta在δ / ε 2 \delta / \varepsilon ^2有界的情况下趋于零,我们证明了存在一个子序列的解,它在L ω,t, x 1 L^1_ {\omega,t, \mathbf x{上强收敛于下述具有不连续通量的随机守恒律的鞅解:d u + d i v f (x, u) d t = Φ (u) d W t。}}\begin{equation*} d u +div\mathfrak {f}(\mathbf {x}, u)\,dt =\Phi (u)\, dW_t. \end{equation*}这些证明利用了伽辽金近似、动力学公式以及H - H测度和随机连续方程的新的速度平均结果。分析依赖于在一些特定的准波兰空间中使用随机变量的as表示。本文所建立的收敛框架可以应用于其他随机守恒律的奇异极限问题。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.