{"title":"Consensus-Halving: Does It Ever Get Easier?","authors":"Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, Manolis Zampetakis","doi":"10.1137/20m1387493","DOIUrl":null,"url":null,"abstract":"In the $\\varepsilon$-Consensus-Halving problem, a fundamental problem in fair division, there are $n$ agents with valuations over the interval $[0,1]$, and the goal is to divide the interval into pieces and assign a label \"$+$\" or \"$-$\" to each piece, such that every agent values the total amount of \"$+$\" and the total amount of \"$-$\" almost equally. The problem was recently proven by Filos-Ratsikas and Goldberg [2019] to be the first \"natural\" complete problem for the computational class PPA, answering a decade-old open question. In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the PPA-hardness result of [Filos-Ratsikas and Goldberg, 2019], to the case when agents have piecewise uniform valuations with only two blocks. We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding one in [Filos-Ratsikas and Goldberg, 2019]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized polynomial time algorithm for solving $\\varepsilon$-Consensus-Halving for any $\\varepsilon$, as well as a polynomial-time algorithm for $\\varepsilon=1/2$. Finally, an important application of our new techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-$1/k$-Division problem [Simmons and Su, 2003]. In particular, we prove that $\\varepsilon$-Consensus-$1/3$-Division is PPAD-hard.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"62 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1387493","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
In the $\varepsilon$-Consensus-Halving problem, a fundamental problem in fair division, there are $n$ agents with valuations over the interval $[0,1]$, and the goal is to divide the interval into pieces and assign a label "$+$" or "$-$" to each piece, such that every agent values the total amount of "$+$" and the total amount of "$-$" almost equally. The problem was recently proven by Filos-Ratsikas and Goldberg [2019] to be the first "natural" complete problem for the computational class PPA, answering a decade-old open question. In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the PPA-hardness result of [Filos-Ratsikas and Goldberg, 2019], to the case when agents have piecewise uniform valuations with only two blocks. We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding one in [Filos-Ratsikas and Goldberg, 2019]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized polynomial time algorithm for solving $\varepsilon$-Consensus-Halving for any $\varepsilon$, as well as a polynomial-time algorithm for $\varepsilon=1/2$. Finally, an important application of our new techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-$1/k$-Division problem [Simmons and Su, 2003]. In particular, we prove that $\varepsilon$-Consensus-$1/3$-Division is PPAD-hard.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.