Tribological characteristics of dimpled surfaces filled with dopamine‐modified MoS2

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Tuo Qin, Aibing Yu, Shuo Zhao, Kefan Li, Shaochun Qi, Jiawang Ye
{"title":"Tribological characteristics of dimpled surfaces filled with dopamine‐modified MoS<sub>2</sub>","authors":"Tuo Qin, Aibing Yu, Shuo Zhao, Kefan Li, Shaochun Qi, Jiawang Ye","doi":"10.1049/bsb2.12066","DOIUrl":null,"url":null,"abstract":"Abstract To improve the tribological characteristics of dimples on the surface of 45 steel, the dimples were filled with MoS 2 and MoS 2 modified by dopamine (MoS 2 @ DA), and ball‐disk friction and wear tests were conducted. Specifically, the dimple filling gap, abrasion depth, and surface cross‐sectional area of 45 steel were measured. The wear morphology of the friction ball and exfoliation of MoS 2 in the dimples and the bending characteristics of the specimens were studied. The surface friction coefficient of MoS 2 @ DA‐filled specimen was 17.9% lower than MoS 2 ‐filled specimen, and the dimple filling gap was 70.1% lower, the surface abrasion depth was 5.8% lower, and the abrasion cross‐sectional area was 17.7% smaller. Moreover, the bending strength of the MoS 2 @ DA specimen was 3.27 times greater than that of the MoS 2 specimen, and the exfoliation of MoS 2 was slowed by filling with the MoS 2 @ DA. Finally, the tribological characteristics were also superior for the specimens prepared with MoS 2 @ DA.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"28 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/bsb2.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To improve the tribological characteristics of dimples on the surface of 45 steel, the dimples were filled with MoS 2 and MoS 2 modified by dopamine (MoS 2 @ DA), and ball‐disk friction and wear tests were conducted. Specifically, the dimple filling gap, abrasion depth, and surface cross‐sectional area of 45 steel were measured. The wear morphology of the friction ball and exfoliation of MoS 2 in the dimples and the bending characteristics of the specimens were studied. The surface friction coefficient of MoS 2 @ DA‐filled specimen was 17.9% lower than MoS 2 ‐filled specimen, and the dimple filling gap was 70.1% lower, the surface abrasion depth was 5.8% lower, and the abrasion cross‐sectional area was 17.7% smaller. Moreover, the bending strength of the MoS 2 @ DA specimen was 3.27 times greater than that of the MoS 2 specimen, and the exfoliation of MoS 2 was slowed by filling with the MoS 2 @ DA. Finally, the tribological characteristics were also superior for the specimens prepared with MoS 2 @ DA.
多巴胺修饰二硫化钼填充表面的摩擦学特性
摘要:为了改善45钢表面微窝的摩擦学特性,在微窝表面填充MoS 2和经多巴胺修饰的MoS 2 (MoS 2 @ DA),进行球盘摩擦磨损试验。具体地说,测量了45钢的韧窝填充间隙、磨损深度和表面截面积。研究了摩擦球的磨损形貌、凹窝中二氧化钼的剥落以及试样的弯曲特性。MoS 2 @ DA填充试样的表面摩擦系数比MoS 2填充试样小17.9%,凹窝填充间隙小70.1%,表面磨损深度小5.8%,磨损截面积小17.7%。此外,MoS 2 @ DA的抗弯强度是MoS 2的3.27倍,填充MoS 2 @ DA可以减缓MoS 2的剥落。最后,MoS 2 @ DA制备的试样的摩擦学性能也较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信