Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Jannes Münchmeyer, Joachim Saul, Frederik Tilmann
{"title":"Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation","authors":"Jannes Münchmeyer, Joachim Saul, Frederik Tilmann","doi":"10.1785/0220230187","DOIUrl":null,"url":null,"abstract":"Abstract Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep-learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC-EHB bulletin—a high-quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single-station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"15 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230187","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep-learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC-EHB bulletin—a high-quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single-station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.
深度学习与浅层学习:基于深度学习的深度相位提取与地震深度估计
远震自动监测是全球地震活动性分析的重要组成部分。尽管以自动化的方式约束震中是一种成熟的技术,但约束事件深度实际上更加困难。解决这一挑战的一种方法是远震深度相位,但目前还不能通过自动检测方法精确识别。在这里,我们提出了两个深度学习模型,DepthPhaseTEAM和DepthPhaseNet,来检测和选择深度阶段。为了训练模型,我们基于ISC-EHB公告创建了一个数据集——一个带有详细阶段注释的高质量目录。我们展示了如何将预测的相位到达概率曲线反向投影到深度轴上,从而得到地震深度的准确估计。此外,我们展示了多站模型DepthPhaseTEAM如何比单站模型DepthPhaseNet产生更好和更一致的预测。为了允许直接应用我们的模型,我们将它们集成到SeisBench库中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Seismological Research Letters
Seismological Research Letters 地学-地球化学与地球物理
CiteScore
6.60
自引率
12.10%
发文量
239
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信