A Weakened Markus–Yamabe Condition for Planar Polynomial Differential Systems of Degree

IF 0.7 3区 数学 Q2 MATHEMATICS
Jaume Llibre, Claudia Valls
{"title":"A Weakened Markus–Yamabe Condition for Planar Polynomial Differential Systems of Degree ","authors":"Jaume Llibre, Claudia Valls","doi":"10.1017/s0013091523000615","DOIUrl":null,"url":null,"abstract":"Abstract For a general autonomous planar polynomial differential system, it is difficult to find conditions that are easy to verify and which guarantee global asymptotic stability, weakening the Markus–Yamabe condition. In this paper, we provide three conditions that guarantee the global asymptotic stability for polynomial differential systems of the form $x^{\\prime}=f_1(x,y)$ , $y^{\\prime}=f_2(x,y)$ , where f 1 has degree one, f 2 has degree $n\\ge 1$ and has degree one in the variable y . As a consequence, we provide sufficient conditions, weaker than the Markus–Yamabe conditions that guarantee the global asymptotic stability for any generalized Liénard polynomial differential system of the form $x^{\\prime}=y$ , $y^{\\prime}=g_1(x) +y g_2(x)$ with g 1 and g 2 polynomials of degrees n and m , respectively.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"226 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000615","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a general autonomous planar polynomial differential system, it is difficult to find conditions that are easy to verify and which guarantee global asymptotic stability, weakening the Markus–Yamabe condition. In this paper, we provide three conditions that guarantee the global asymptotic stability for polynomial differential systems of the form $x^{\prime}=f_1(x,y)$ , $y^{\prime}=f_2(x,y)$ , where f 1 has degree one, f 2 has degree $n\ge 1$ and has degree one in the variable y . As a consequence, we provide sufficient conditions, weaker than the Markus–Yamabe conditions that guarantee the global asymptotic stability for any generalized Liénard polynomial differential system of the form $x^{\prime}=y$ , $y^{\prime}=g_1(x) +y g_2(x)$ with g 1 and g 2 polynomials of degrees n and m , respectively.
平面多项式次微分系统的弱化Markus-Yamabe条件
摘要对于一般自治平面多项式微分系统,很难找到易于验证且保证全局渐近稳定的条件,削弱了Markus-Yamabe条件。本文给出了具有$x^{\素数}=f_1(x,y)$, $y^{\素数}=f_2(x,y)$形式的多项式微分系统全局渐近稳定性的三个条件,其中f 1有阶1,f 2有阶1,且在变量y上有阶1。因此,我们提供了比Markus-Yamabe条件更弱的充分条件,保证了任意形式为$x^{\素数}=y$, $y^{\素数}=g_1(x) +y g_2(x)$的广义lisamadard多项式微分系统的全局渐近稳定性,该系统分别具有n次多项式和m次多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信