Dual-Matrix Domain Wall: A Novel Technique for Generating Permutations by QUBO and Ising Models with Quadratic Sizes

Koji Nakano, Shunsuke Tsukiyama, Yasuaki Ito, Takashi Yazane, Junko Yano, Takumi Kato, Shiro Ozaki, Rie Mori, Ryota Katsuki
{"title":"Dual-Matrix Domain Wall: A Novel Technique for Generating Permutations by QUBO and Ising Models with Quadratic Sizes","authors":"Koji Nakano, Shunsuke Tsukiyama, Yasuaki Ito, Takashi Yazane, Junko Yano, Takumi Kato, Shiro Ozaki, Rie Mori, Ryota Katsuki","doi":"10.3390/technologies11050143","DOIUrl":null,"url":null,"abstract":"The Ising model is defined by an objective function using a quadratic formula of qubit variables. The problem of an Ising model aims to determine the qubit values of the variables that minimize the objective function, and many optimization problems can be reduced to this problem. In this paper, we focus on optimization problems related to permutations, where the goal is to find the optimal permutation out of the n! possible permutations of n elements. To represent these problems as Ising models, a commonly employed approach is to use a kernel that applies one-hot encoding to find any one of the n! permutations as the optimal solution. However, this kernel contains a large number of quadratic terms and high absolute coefficient values. The main contribution of this paper is the introduction of a novel permutation encoding technique called the dual-matrix domain wall, which significantly reduces the number of quadratic terms and the maximum absolute coefficient values in the kernel. Surprisingly, our dual-matrix domain-wall encoding reduces the quadratic term count and maximum absolute coefficient values from n3−n2 and 2n−4 to 6n2−12n+4 and 2, respectively. We also demonstrate the applicability of our encoding technique to partial permutations and Quadratic Unconstrained Binary Optimization (QUBO) models. Furthermore, we discuss a family of permutation problems that can be efficiently implemented using Ising/QUBO models with our dual-matrix domain-wall encoding.","PeriodicalId":472933,"journal":{"name":"Technologies (Basel)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11050143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Ising model is defined by an objective function using a quadratic formula of qubit variables. The problem of an Ising model aims to determine the qubit values of the variables that minimize the objective function, and many optimization problems can be reduced to this problem. In this paper, we focus on optimization problems related to permutations, where the goal is to find the optimal permutation out of the n! possible permutations of n elements. To represent these problems as Ising models, a commonly employed approach is to use a kernel that applies one-hot encoding to find any one of the n! permutations as the optimal solution. However, this kernel contains a large number of quadratic terms and high absolute coefficient values. The main contribution of this paper is the introduction of a novel permutation encoding technique called the dual-matrix domain wall, which significantly reduces the number of quadratic terms and the maximum absolute coefficient values in the kernel. Surprisingly, our dual-matrix domain-wall encoding reduces the quadratic term count and maximum absolute coefficient values from n3−n2 and 2n−4 to 6n2−12n+4 and 2, respectively. We also demonstrate the applicability of our encoding technique to partial permutations and Quadratic Unconstrained Binary Optimization (QUBO) models. Furthermore, we discuss a family of permutation problems that can be efficiently implemented using Ising/QUBO models with our dual-matrix domain-wall encoding.
双矩阵域壁:一种利用二次元的QUBO和Ising模型生成置换的新技术
伊辛模型由目标函数定义,使用量子位变量的二次公式。伊辛模型的问题旨在确定使目标函数最小的变量的量子位值,许多优化问题可以简化为这个问题。在本文中,我们关注与排列相关的优化问题,其目标是在n!n个元素的可能排列。为了将这些问题表示为Ising模型,一种常用的方法是使用内核,该内核应用one-hot编码来找到n!排列作为最优解。然而,该核包含大量的二次项和高的绝对系数值。本文的主要贡献是引入了一种新的排列编码技术,称为双矩阵域壁,它显著减少了二次项的数量和核中的最大绝对系数值。令人惊讶的是,我们的双矩阵域壁编码将二次项计数和最大绝对系数值分别从n3−n2和2n−4减少到6n2−12n+4和2。我们还证明了我们的编码技术在部分排列和二次无约束二进制优化(QUBO)模型中的适用性。此外,我们讨论了一组可以使用我们的双矩阵域壁编码的Ising/QUBO模型有效实现的置换问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信