Strong Convergence of Trajectories via Inertial Dynamics Combining Hessian-Driven Damping and Tikhonov Regularization for General Convex Minimizations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Akram Chahid Bagy, Zaki Chbani, Hassan Riahi
{"title":"Strong Convergence of Trajectories via Inertial Dynamics Combining Hessian-Driven Damping and Tikhonov Regularization for General Convex Minimizations","authors":"Akram Chahid Bagy, Zaki Chbani, Hassan Riahi","doi":"10.1080/01630563.2023.2262828","DOIUrl":null,"url":null,"abstract":"AbstractLet H be a real Hilbert space, and f:H→R be a convex twice differentiable function whose solution set argminf is nonempty. We investigate the long time behavior of the trajectories of the vanishing damped dynamical system with Tikhonov regularizing term and Hessian-driven damping x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0 where α,c,δ are three positive constants, and the time scale parameter β is a positive nondecreasing function such that limt→+∞β(t)=+∞. Under some assumptions on the parameter β, we will show rapid convergence of values, strong convergence toward the minimum norm element of argminf, and rapid convergence of the gradients toward zero. Note that the Hessian-driven damping significantly reduces the oscillatory aspects, and the time scale parameter β improves the rate of convergences mentioned above. As particular cases of β, we set β(t)=tp ln q(t), for (p,q)∈(R+)2∖{(0,0)}, and β(t)=eγtp, for p∈]0,1[ and γ>0. The manuscript concludes with two numerical examples and comments on their performance.KEYWORDS: Damped dynamical systemfast convergenceHessian-driven dampingHilbert spacestrong convergenceTikhonov regularizationMATHEMATICS SUBJECT CLASSIFICATION: 37N4046N1049M3065K0565K1090B5090C25","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2262828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractLet H be a real Hilbert space, and f:H→R be a convex twice differentiable function whose solution set argminf is nonempty. We investigate the long time behavior of the trajectories of the vanishing damped dynamical system with Tikhonov regularizing term and Hessian-driven damping x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0 where α,c,δ are three positive constants, and the time scale parameter β is a positive nondecreasing function such that limt→+∞β(t)=+∞. Under some assumptions on the parameter β, we will show rapid convergence of values, strong convergence toward the minimum norm element of argminf, and rapid convergence of the gradients toward zero. Note that the Hessian-driven damping significantly reduces the oscillatory aspects, and the time scale parameter β improves the rate of convergences mentioned above. As particular cases of β, we set β(t)=tp ln q(t), for (p,q)∈(R+)2∖{(0,0)}, and β(t)=eγtp, for p∈]0,1[ and γ>0. The manuscript concludes with two numerical examples and comments on their performance.KEYWORDS: Damped dynamical systemfast convergenceHessian-driven dampingHilbert spacestrong convergenceTikhonov regularizationMATHEMATICS SUBJECT CLASSIFICATION: 37N4046N1049M3065K0565K1090B5090C25
结合hessian驱动阻尼和Tikhonov正则化的惯性动力学下轨迹的强收敛
摘要设H为实数Hilbert空间,f:H→R为解集arminf非空的凸二次可微函数。我们研究了具有Tikhonov正则化项和hessian驱动阻尼x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0的消失阻尼动力系统的长时间行为,其中α、c、δ是三个正常数,时间尺度参数β是一个正的非递减函数,使得极限→+∞β(t)=+∞。在参数β的某些假设下,我们将证明值的快速收敛,向argminf的最小范数元素的强收敛,以及梯度向零的快速收敛。注意,hessian驱动的阻尼显著降低了振荡方面,时间尺度参数β提高了上述收敛速度。作为β的特殊情况下,我们设置β(t) = tp ln q (t)为(p, q)∈(R +) 2∖{(0,0)},和β(t) = eγtp, p∈]0,1和γ> 0。文章最后给出了两个数值例子,并对它们的性能进行了评价。关键词:阻尼动力系统快速收敛;hessia驱动阻尼;hilbert空间;强收敛
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信