Integrative Analysis of Multi-Omics Data with Deep Learning: Challenges and Opportunities in Bioinformatics.

Q3 Engineering
Gonesh Chandra Saha Et al.
{"title":"Integrative Analysis of Multi-Omics Data with Deep Learning: Challenges and Opportunities in Bioinformatics.","authors":"Gonesh Chandra Saha Et al.","doi":"10.52783/tjjpt.v44.i3.488","DOIUrl":null,"url":null,"abstract":"The advent of high-throughput technologies has ushered in an era of unprecedented data generation in the field of bioinformatics. Omics data, including genomics, transcriptomics, proteomics, and metabolomics, provide comprehensive insights into biological systems, but their integration poses significant challenges. Integrative analysis of multi-omics data holds the promise of unraveling complex biological phenomena and enabling personalized medicine. [1] Deep learning, a subset of machine learning, has gained prominence in bioinformatics due to its ability to automatically extract intricate patterns from large-scale multi-omics datasets. This paper presents an overview of the challenges and opportunities associated with the integrative analysis of multi-omics data using deep learning techniques in bioinformatics.The challenges in multi-omics integration primarily stem from data heterogeneity, dimensionality, and noise. One of the key opportunities presented by deep learning is its ability to capture complex, non-linear relationships in multi-omics data. The paper emphasizes the importance of interpretability and explainability in deep learning models applied to bioinformatics, as they play a crucial role in gaining biological insights and facilitating clinical decision-making. The integration of domain knowledge and biological context is highlighted as a critical aspect of model development. The paper showcases real-world applications of deep learning in multi-omics data integration, such as disease subtype classification, biomarker discovery, and drug response prediction. As the field continues to evolve, addressing these challenges and harnessing the potential of deep learning approaches will pave the way for transformative advancements in our understanding of complex biological systems and the development of precision medicine strategies.","PeriodicalId":39883,"journal":{"name":"推进技术","volume":"53 92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"推进技术","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/tjjpt.v44.i3.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of high-throughput technologies has ushered in an era of unprecedented data generation in the field of bioinformatics. Omics data, including genomics, transcriptomics, proteomics, and metabolomics, provide comprehensive insights into biological systems, but their integration poses significant challenges. Integrative analysis of multi-omics data holds the promise of unraveling complex biological phenomena and enabling personalized medicine. [1] Deep learning, a subset of machine learning, has gained prominence in bioinformatics due to its ability to automatically extract intricate patterns from large-scale multi-omics datasets. This paper presents an overview of the challenges and opportunities associated with the integrative analysis of multi-omics data using deep learning techniques in bioinformatics.The challenges in multi-omics integration primarily stem from data heterogeneity, dimensionality, and noise. One of the key opportunities presented by deep learning is its ability to capture complex, non-linear relationships in multi-omics data. The paper emphasizes the importance of interpretability and explainability in deep learning models applied to bioinformatics, as they play a crucial role in gaining biological insights and facilitating clinical decision-making. The integration of domain knowledge and biological context is highlighted as a critical aspect of model development. The paper showcases real-world applications of deep learning in multi-omics data integration, such as disease subtype classification, biomarker discovery, and drug response prediction. As the field continues to evolve, addressing these challenges and harnessing the potential of deep learning approaches will pave the way for transformative advancements in our understanding of complex biological systems and the development of precision medicine strategies.
多组学数据与深度学习的整合分析:生物信息学的挑战与机遇。
高通量技术的出现开创了生物信息学领域前所未有的数据生成时代。组学数据,包括基因组学、转录组学、蛋白质组学和代谢组学,提供了对生物系统的全面见解,但它们的整合带来了重大挑战。多组学数据的综合分析有望揭示复杂的生物现象并实现个性化医疗。[1]深度学习是机器学习的一个子集,由于能够从大规模的多组学数据集中自动提取复杂的模式,在生物信息学中获得了突出的地位。本文概述了在生物信息学中使用深度学习技术对多组学数据进行综合分析所面临的挑战和机遇。多组学集成的挑战主要来自于数据的异构性、维度和噪声。深度学习提供的关键机会之一是它能够捕获多组学数据中复杂的非线性关系。本文强调了应用于生物信息学的深度学习模型的可解释性和可解释性的重要性,因为它们在获得生物学见解和促进临床决策方面发挥着至关重要的作用。领域知识和生物背景的整合被强调为模型开发的一个关键方面。本文展示了深度学习在多组学数据集成中的实际应用,如疾病亚型分类、生物标志物发现和药物反应预测。随着该领域的不断发展,解决这些挑战并利用深度学习方法的潜力将为我们对复杂生物系统的理解和精准医学战略的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
推进技术
推进技术 Engineering-Aerospace Engineering
CiteScore
1.40
自引率
0.00%
发文量
6610
期刊介绍: "Propulsion Technology" is supervised by China Aerospace Science and Industry Corporation and sponsored by the 31st Institute of China Aerospace Science and Industry Corporation. It is an important journal of Chinese degree and graduate education determined by the Academic Degree Committee of the State Council and the State Education Commission. It was founded in 1980 and is a monthly publication, which is publicly distributed at home and abroad. Purpose of the publication: Adhere to the principles of quality, specialization, standardized editing, and scientific management, publish academic papers on theoretical research, design, and testing of various aircraft, UAVs, missiles, launch vehicles, spacecraft, and ship propulsion systems, and promote the development and progress of turbines, ramjets, rockets, detonation, lasers, nuclear energy, electric propulsion, joint propulsion, new concepts, and new propulsion technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信