{"title":"AI in Cybersecurity: Threat Detection and Response with Machine Learning","authors":"Nand Kumar Et al.","doi":"10.52783/tjjpt.v44.i3.237","DOIUrl":null,"url":null,"abstract":"Cybersecurity threats are malicious activities or events that pose risks to the confidentiality, integrity, and availability of digital information systems, networks, and data. These threats can encompass a wide range of actions conducted by cybercriminals, hackers, or even insiders with malicious intent. Understanding these threats is crucial in safeguarding digital assets and maintaining the trust and reliability of modern information technology. In the rapidly evolving landscape of cybersecurity, the relentless growth of cyber threats poses a formidable challenge to organizations worldwide. To combat these threats effectively, there is an increasing reliance on Artificial Intelligence (AI) and Machine Learning (ML) techniques. This paper explores the integration of AI and ML into cybersecurity for threat detection and response, shedding light on the transformative impact of these technologies. AI (Artificial Intelligence) and ML (Machine Learning) have the potential to both bolster cybersecurity defences and, paradoxically, facilitate cyberattacks. On the defensive side, AI and ML technologies enhance threat detection and response, allowing organizations to identify and mitigate threats more efficiently. They can analyse vast amounts of data in real-time, spot anomalies, and recognize patterns indicative of potential cyberattacks. However, cybercriminals are also harnessing the power of AI and ML to perpetrate more sophisticated and targeted attacks. Ethical considerations surrounding AI in cybersecurity, including privacy concerns and responsible AI implementation, are also discussed to ensure a balanced and secure approach. The paper underscores the transformative impact of AI and ML in bolstering cybersecurity practices. It advocates for the integration of AI as an indispensable tool to fortify organizations against the ever-evolving landscape of cyber threats, ultimately enhancing their ability to detect, respond to, and mitigate potential breaches.","PeriodicalId":39883,"journal":{"name":"推进技术","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"推进技术","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/tjjpt.v44.i3.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Cybersecurity threats are malicious activities or events that pose risks to the confidentiality, integrity, and availability of digital information systems, networks, and data. These threats can encompass a wide range of actions conducted by cybercriminals, hackers, or even insiders with malicious intent. Understanding these threats is crucial in safeguarding digital assets and maintaining the trust and reliability of modern information technology. In the rapidly evolving landscape of cybersecurity, the relentless growth of cyber threats poses a formidable challenge to organizations worldwide. To combat these threats effectively, there is an increasing reliance on Artificial Intelligence (AI) and Machine Learning (ML) techniques. This paper explores the integration of AI and ML into cybersecurity for threat detection and response, shedding light on the transformative impact of these technologies. AI (Artificial Intelligence) and ML (Machine Learning) have the potential to both bolster cybersecurity defences and, paradoxically, facilitate cyberattacks. On the defensive side, AI and ML technologies enhance threat detection and response, allowing organizations to identify and mitigate threats more efficiently. They can analyse vast amounts of data in real-time, spot anomalies, and recognize patterns indicative of potential cyberattacks. However, cybercriminals are also harnessing the power of AI and ML to perpetrate more sophisticated and targeted attacks. Ethical considerations surrounding AI in cybersecurity, including privacy concerns and responsible AI implementation, are also discussed to ensure a balanced and secure approach. The paper underscores the transformative impact of AI and ML in bolstering cybersecurity practices. It advocates for the integration of AI as an indispensable tool to fortify organizations against the ever-evolving landscape of cyber threats, ultimately enhancing their ability to detect, respond to, and mitigate potential breaches.
期刊介绍:
"Propulsion Technology" is supervised by China Aerospace Science and Industry Corporation and sponsored by the 31st Institute of China Aerospace Science and Industry Corporation. It is an important journal of Chinese degree and graduate education determined by the Academic Degree Committee of the State Council and the State Education Commission. It was founded in 1980 and is a monthly publication, which is publicly distributed at home and abroad.
Purpose of the publication: Adhere to the principles of quality, specialization, standardized editing, and scientific management, publish academic papers on theoretical research, design, and testing of various aircraft, UAVs, missiles, launch vehicles, spacecraft, and ship propulsion systems, and promote the development and progress of turbines, ramjets, rockets, detonation, lasers, nuclear energy, electric propulsion, joint propulsion, new concepts, and new propulsion technologies.