Waste materials composited into an adsorbent for landfill leachate treatment

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
K. K.P. S. Kumara, W. K. C. Neetha Dayanthi
{"title":"Waste materials composited into an adsorbent for landfill leachate treatment","authors":"K. K.P. S. Kumara, W. K. C. Neetha Dayanthi","doi":"10.2166/wh.2023.310","DOIUrl":null,"url":null,"abstract":"Abstract The ability of a composite adsorbent composed primarily of various waste materials to adsorb heavy metals, NH3-N, and chemical oxygen demand (COD) from landfill leachate was investigated through batch sorption experiments. The study determined the optimal contact time and adsorbent dosage for the removal of Pb, Zn, Cu, Fe, NH3-N, and COD to be 15, 90, 30, 180, 30, and 30 min, respectively. The corresponding optimum adsorbent dosages were determined to be 5, 30, 5, 15, 5, and 30 g, respectively. The composite adsorbent exhibited high removal efficiencies, achieving the following maximum values: 96.4% for Pb, 92.7% for Zn, 60.3% for Cu, 87.1% for Fe, 75.0% for NH3-N, and 67.5% for COD. Pb and Fe showed the best fit with a Langmuir isotherm model, with corresponding adsorption capacities of 0.0165 and 1.14 mg/g, respectively. For Zn, Cu, NH3-N, and COD, the equilibrium data demonstrated the best fit with an Elovich isotherm model, with adsorption capacities of 0.004, 0.005, 0.016, and 4.29 mg/g, respectively. The kinetic data followed the pseudo-second-order kinetic model. It presented a potential solution for the disposal of the waste materials from which it was derived.","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"16 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wh.2023.310","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The ability of a composite adsorbent composed primarily of various waste materials to adsorb heavy metals, NH3-N, and chemical oxygen demand (COD) from landfill leachate was investigated through batch sorption experiments. The study determined the optimal contact time and adsorbent dosage for the removal of Pb, Zn, Cu, Fe, NH3-N, and COD to be 15, 90, 30, 180, 30, and 30 min, respectively. The corresponding optimum adsorbent dosages were determined to be 5, 30, 5, 15, 5, and 30 g, respectively. The composite adsorbent exhibited high removal efficiencies, achieving the following maximum values: 96.4% for Pb, 92.7% for Zn, 60.3% for Cu, 87.1% for Fe, 75.0% for NH3-N, and 67.5% for COD. Pb and Fe showed the best fit with a Langmuir isotherm model, with corresponding adsorption capacities of 0.0165 and 1.14 mg/g, respectively. For Zn, Cu, NH3-N, and COD, the equilibrium data demonstrated the best fit with an Elovich isotherm model, with adsorption capacities of 0.004, 0.005, 0.016, and 4.29 mg/g, respectively. The kinetic data followed the pseudo-second-order kinetic model. It presented a potential solution for the disposal of the waste materials from which it was derived.
将废弃物合成吸附剂处理垃圾渗滤液
摘要通过批量吸附实验,研究了由多种废弃物组成的复合吸附剂对垃圾渗滤液中重金属、NH3-N和化学需氧量(COD)的吸附能力。研究确定了去除Pb、Zn、Cu、Fe、NH3-N和COD的最佳接触时间和吸附剂用量分别为15、90、30、180、30和30 min。确定最佳吸附剂用量分别为5、30、5、15、5、30 g。复合吸附剂具有较高的去除率,Pb去除率96.4%,Zn去除率92.7%,Cu去除率60.3%,Fe去除率87.1%,NH3-N去除率75.0%,COD去除率67.5%。Pb和Fe的吸附量分别为0.0165和1.14 mg/g,符合Langmuir等温线模型。对Zn、Cu、NH3-N和COD的吸附量分别为0.004、0.005、0.016和4.29 mg/g,符合Elovich等温模型。动力学数据符合准二级动力学模型。它提出了一种潜在的解决方案,用于处理它所产生的废料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water and health
Journal of water and health 环境科学-环境科学
CiteScore
3.60
自引率
8.70%
发文量
110
审稿时长
18-36 weeks
期刊介绍: Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信