A Tight Bound for the Number of Edges of Matchstick Graphs

Jérémy Lavollée, Konrad Swanepoel
{"title":"A Tight Bound for the Number of Edges of Matchstick Graphs","authors":"Jérémy Lavollée, Konrad Swanepoel","doi":"10.1007/s00454-023-00530-z","DOIUrl":null,"url":null,"abstract":"Abstract A matchstick graph is a plane graph with edges drawn as unit-distance line segments. Harborth introduced these graphs in 1981 and conjectured that the maximum number of edges for a matchstick graph on n vertices is $$\\lfloor 3n-\\sqrt{12n-3}\\rfloor $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⌊</mml:mo> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>12</mml:mn> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>⌋</mml:mo> </mml:mrow> </mml:math> . In this paper we prove this conjecture for all $$n\\ge 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . The main geometric ingredient of the proof is an isoperimetric inequality related to L’Huilier’s inequality.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00530-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A matchstick graph is a plane graph with edges drawn as unit-distance line segments. Harborth introduced these graphs in 1981 and conjectured that the maximum number of edges for a matchstick graph on n vertices is $$\lfloor 3n-\sqrt{12n-3}\rfloor $$ 3 n - 12 n - 3 . In this paper we prove this conjecture for all $$n\ge 1$$ n 1 . The main geometric ingredient of the proof is an isoperimetric inequality related to L’Huilier’s inequality.
火柴图边数的紧界
火柴棍图是一种边绘制为单位距离线段的平面图。Harborth在1981年引入了这些图,并推测在n个顶点上的火柴棒图的最大边数是$$\lfloor 3n-\sqrt{12n-3}\rfloor $$⌊3 n - 12 n - 3⌋。本文对所有$$n\ge 1$$ n≥1证明了这个猜想。证明的主要几何成分是一个与L 'Huilier不等式有关的等周不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信