{"title":"Intelligent edge network routing architecture with blockchain for the IoT","authors":"Yongan Guo, Yuao Wang, Qijie Qian","doi":"10.23919/jcc.ea.2022-0006.202302","DOIUrl":null,"url":null,"abstract":"The demand for the Internet of Everything has slowed down network routing efficiency. Traditional routing policies rely on manual configuration, which has limitations and adversely affects network performance. In this paper, we propose an Internet of Things (IoT) Intelligent Edge Network Routing (ENIR) architecture. ENIR uses deep reinforcement learning (DRL) to simulate human learning of empirical knowledge and an intelligent routing closed-loop control mechanism for real-time interaction with the network environment. According to the network demand and environmental conditions, the method can dynamically adjust network resources and perform intelligent routing optimization. It uses blockchain technology to share network knowledge and global optimization of network routing. The intelligent routing method uses the deep deterministic policy gradient (DDPG) algorithm. Our simulation results show that ENIR provides significantly better link utilization and transmission delay performance than various routing methods (e.g., open shortest path first, routing based on Q-learning and DRL-based control framework for traffic engineering).","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"470 2","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2022-0006.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
The demand for the Internet of Everything has slowed down network routing efficiency. Traditional routing policies rely on manual configuration, which has limitations and adversely affects network performance. In this paper, we propose an Internet of Things (IoT) Intelligent Edge Network Routing (ENIR) architecture. ENIR uses deep reinforcement learning (DRL) to simulate human learning of empirical knowledge and an intelligent routing closed-loop control mechanism for real-time interaction with the network environment. According to the network demand and environmental conditions, the method can dynamically adjust network resources and perform intelligent routing optimization. It uses blockchain technology to share network knowledge and global optimization of network routing. The intelligent routing method uses the deep deterministic policy gradient (DDPG) algorithm. Our simulation results show that ENIR provides significantly better link utilization and transmission delay performance than various routing methods (e.g., open shortest path first, routing based on Q-learning and DRL-based control framework for traffic engineering).
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.