Explainable Activity Recognition in Videos using Deep Learning and Tractable Probabilistic Models

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chiradeep Roy, Mahsan Nourani, Shivvrat Arya, Mahesh Shanbhag, Tahrima Rahman, Eric D. Ragan, Nicholas Ruozzi, Vibhav Gogate
{"title":"Explainable Activity Recognition in Videos using Deep Learning and Tractable Probabilistic Models","authors":"Chiradeep Roy, Mahsan Nourani, Shivvrat Arya, Mahesh Shanbhag, Tahrima Rahman, Eric D. Ragan, Nicholas Ruozzi, Vibhav Gogate","doi":"10.1145/3626961","DOIUrl":null,"url":null,"abstract":"We consider the following video activity recognition (VAR) task: given a video, infer the set of activities being performed in the video and assign each frame to an activity. Although VAR can be solved accurately using existing deep learning techniques, deep networks are neither interpretable nor explainable and as a result their use is problematic in high stakes decision-making applications (e.g., in healthcare, experimental Biology, aviation, law, etc.). In such applications, failure may lead to disastrous consequences and therefore it is necessary that the user is able to either understand the inner workings of the model or probe it to understand its reasoning patterns for a given decision. We address these limitations of deep networks by proposing a new approach that feeds the output of a deep model into a tractable, interpretable probabilistic model called a dynamic conditional cutset network that is defined over the explanatory and output variables and then performing joint inference over the combined model. The two key benefits of using cutset networks are: (a) they explicitly model the relationship between the output and explanatory variables and as a result the combined model is likely to be more accurate than the vanilla deep model and (b) they can answer reasoning queries in polynomial time and as a result they can derive meaningful explanations by efficiently answering explanation queries. We demonstrate the efficacy of our approach on two datasets, Textually Annotated Cooking Scenes (TACoS), and wet lab, using conventional evaluation measures such as the Jaccard Index and Hamming Loss, as well as a human-subjects study.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626961","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following video activity recognition (VAR) task: given a video, infer the set of activities being performed in the video and assign each frame to an activity. Although VAR can be solved accurately using existing deep learning techniques, deep networks are neither interpretable nor explainable and as a result their use is problematic in high stakes decision-making applications (e.g., in healthcare, experimental Biology, aviation, law, etc.). In such applications, failure may lead to disastrous consequences and therefore it is necessary that the user is able to either understand the inner workings of the model or probe it to understand its reasoning patterns for a given decision. We address these limitations of deep networks by proposing a new approach that feeds the output of a deep model into a tractable, interpretable probabilistic model called a dynamic conditional cutset network that is defined over the explanatory and output variables and then performing joint inference over the combined model. The two key benefits of using cutset networks are: (a) they explicitly model the relationship between the output and explanatory variables and as a result the combined model is likely to be more accurate than the vanilla deep model and (b) they can answer reasoning queries in polynomial time and as a result they can derive meaningful explanations by efficiently answering explanation queries. We demonstrate the efficacy of our approach on two datasets, Textually Annotated Cooking Scenes (TACoS), and wet lab, using conventional evaluation measures such as the Jaccard Index and Hamming Loss, as well as a human-subjects study.
使用深度学习和可处理概率模型的视频中可解释的活动识别
我们考虑以下视频活动识别(VAR)任务:给定视频,推断视频中正在执行的活动集,并将每一帧分配给一个活动。尽管使用现有的深度学习技术可以准确地解决VAR,但深度网络既不可解释也不可解释,因此在高风险决策应用(例如医疗保健、实验生物学、航空、法律等)中使用它们是有问题的。在这样的应用程序中,失败可能会导致灾难性的后果,因此用户必须能够理解模型的内部工作原理,或者探索模型以理解给定决策的推理模式。我们通过提出一种新的方法来解决深度网络的这些局限性,该方法将深度模型的输出输入到一个可处理的,可解释的概率模型中,称为动态条件割集网络,该模型定义在解释变量和输出变量上,然后在组合模型上执行联合推理。使用割集网络的两个关键好处是:(a)它们显式地建模输出和解释变量之间的关系,因此组合模型可能比普通深度模型更准确;(b)它们可以在多项式时间内回答推理查询,因此它们可以通过有效地回答解释查询来获得有意义的解释。我们在两个数据集上证明了我们的方法的有效性,文本注释烹饪场景(TACoS)和湿实验室,使用传统的评估措施,如Jaccard指数和Hamming损失,以及人类受试者研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信