{"title":"Quantum Continuants, Quantum Rotundus and Triangulations of Annuli","authors":"Ludivine Leclere, Sophie Morier-Genoud","doi":"10.37236/11400","DOIUrl":null,"url":null,"abstract":"We give enumerative interpretations of the polynomials arising as numerators and denominators of the $q$-deformed rational numbers introduced by Morier-Genoud and Ovsienko. The considered polynomials are quantum analogues of the classical continuants and of their cyclically invariant versions called rotundi. The combinatorial models involve triangulations of polygons and annuli. We prove that the quantum continuants are the coarea-generating functions of paths in a triangulated polygon and that the quantum rotundi are the (co)area-generating functions of closed loops on a triangulated annulus.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"36 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11400","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give enumerative interpretations of the polynomials arising as numerators and denominators of the $q$-deformed rational numbers introduced by Morier-Genoud and Ovsienko. The considered polynomials are quantum analogues of the classical continuants and of their cyclically invariant versions called rotundi. The combinatorial models involve triangulations of polygons and annuli. We prove that the quantum continuants are the coarea-generating functions of paths in a triangulated polygon and that the quantum rotundi are the (co)area-generating functions of closed loops on a triangulated annulus.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.