Quantum Continuants, Quantum Rotundus and Triangulations of Annuli

IF 0.7 4区 数学 Q2 MATHEMATICS
Ludivine Leclere, Sophie Morier-Genoud
{"title":"Quantum Continuants, Quantum Rotundus and Triangulations of Annuli","authors":"Ludivine Leclere, Sophie Morier-Genoud","doi":"10.37236/11400","DOIUrl":null,"url":null,"abstract":"We give enumerative interpretations of the polynomials arising as numerators and denominators of the $q$-deformed rational numbers introduced by Morier-Genoud and Ovsienko. The considered polynomials are quantum analogues of the classical continuants and of their cyclically invariant versions called rotundi. The combinatorial models involve triangulations of polygons and annuli. We prove that the quantum continuants are the coarea-generating functions of paths in a triangulated polygon and that the quantum rotundi are the (co)area-generating functions of closed loops on a triangulated annulus.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"36 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11400","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give enumerative interpretations of the polynomials arising as numerators and denominators of the $q$-deformed rational numbers introduced by Morier-Genoud and Ovsienko. The considered polynomials are quantum analogues of the classical continuants and of their cyclically invariant versions called rotundi. The combinatorial models involve triangulations of polygons and annuli. We prove that the quantum continuants are the coarea-generating functions of paths in a triangulated polygon and that the quantum rotundi are the (co)area-generating functions of closed loops on a triangulated annulus.
量子连续面、量子旋转面和环面的三角剖分
本文给出了Morier-Genoud和Ovsienko引入的$q$变形有理数的分子和分母多项式的枚举解释。所考虑的多项式是经典连续体及其循环不变版本(称为rotundi)的量子类似物。组合模型涉及多边形和环空的三角剖分。证明了量子连续体是三角形多边形中路径的共面积生成函数,量子圆体是三角形环上闭环的共面积生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信