{"title":"Cut Vertices in Random Planar Maps","authors":"Michael Drmota, Marc Noy, Benedikt Stufler","doi":"10.37236/11163","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \\to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"74 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.