Twin delayed deep deterministic reinforcement learning application in vehicle electrical suspension control

Q3 Engineering
Daoyu Shen, Shilei Zhou, Nong Zhang
{"title":"Twin delayed deep deterministic reinforcement learning application in vehicle electrical suspension control","authors":"Daoyu Shen, Shilei Zhou, Nong Zhang","doi":"10.1504/ijvp.2023.133852","DOIUrl":null,"url":null,"abstract":"Coming with the rising focus of the driving comfort request, more efforts are being delivered into the study of suspension system. Comparing with other traditional control methods, the machine learning control strategy has demonstrated its optimality in dealing with different class of roads. The work presented in this paper is to apply twin delayed deep deterministic policy gradients (TD3) in suspension control which enables suspension controller to go beyond searching for an optimal set of system parameters from traditional control method in dealing with different class of pavements. To achieve this, a suspension model has been established together with a reinforcement learning algorithm and an input signal of pavement. The performance of the twin delayed reinforcement agent is compared against deep deterministic policy gradients (DDPG) and deep Q-learning (DQN) algorithms under different types of pavement. The simulation result shows its superiority, robustness and learning efficiency over other reinforcement learning algorithms.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2023.133852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Coming with the rising focus of the driving comfort request, more efforts are being delivered into the study of suspension system. Comparing with other traditional control methods, the machine learning control strategy has demonstrated its optimality in dealing with different class of roads. The work presented in this paper is to apply twin delayed deep deterministic policy gradients (TD3) in suspension control which enables suspension controller to go beyond searching for an optimal set of system parameters from traditional control method in dealing with different class of pavements. To achieve this, a suspension model has been established together with a reinforcement learning algorithm and an input signal of pavement. The performance of the twin delayed reinforcement agent is compared against deep deterministic policy gradients (DDPG) and deep Q-learning (DQN) algorithms under different types of pavement. The simulation result shows its superiority, robustness and learning efficiency over other reinforcement learning algorithms.
双延迟深度确定性强化学习在汽车悬架控制中的应用
随着人们对驾驶舒适性要求的日益关注,人们对悬架系统的研究投入了更多的精力。与其他传统控制方法相比,机器学习控制策略在处理不同类型道路时表现出了最优性。本文的工作是将双延迟深度确定性策略梯度(TD3)应用于悬架控制,使悬架控制器在处理不同类型的路面时,能够超越传统控制方法对系统参数的最优集的搜索。为了实现这一目标,建立了悬架模型,并采用强化学习算法和路面输入信号。将双延迟补强剂与深度确定性策略梯度(DDPG)和深度q -学习(DQN)算法在不同路面类型下的性能进行了比较。仿真结果表明了该算法的优越性、鲁棒性和学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信