{"title":"System outage probability and diversity analysis of a SWIPT based two-way DF relay network under transceiver hardware impairments","authors":"Guangyue Lu, Zhipeng Liu, Yinghui Ye, Xiaoli Chu","doi":"10.23919/jcc.ea.2021-0184.202302","DOIUrl":null,"url":null,"abstract":"This paper investigates the system outage performance of a simultaneous wireless information and power transfer (SWIPT) based two-way decode-and-forward (DF) relay network, where potential hardware impairments (HIs) in all transceivers are considered. After harvesting energy and decoding messages simultaneously via a power splitting scheme, the energy-limited relay node forwards the decoded information to both terminals. Each terminal combines the signals from the direct and relaying links via selection combining. We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels. It reveals an overall system ceiling (OSC) effect, i.e., the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs. Furthermore, we derive the diversity gain of the considered network. The result reveals that when the transmission rate is below the OSC threshold, the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminal-to-relay links; otherwise, the diversity gain is zero. This is different from the amplify-and-forward (AF) strategy, under which the relaying links have no contribution to the diversity gain. Simulation results validate the analytical results and reveal that compared with the AF strategy, the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"258 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2021-0184.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates the system outage performance of a simultaneous wireless information and power transfer (SWIPT) based two-way decode-and-forward (DF) relay network, where potential hardware impairments (HIs) in all transceivers are considered. After harvesting energy and decoding messages simultaneously via a power splitting scheme, the energy-limited relay node forwards the decoded information to both terminals. Each terminal combines the signals from the direct and relaying links via selection combining. We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels. It reveals an overall system ceiling (OSC) effect, i.e., the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs. Furthermore, we derive the diversity gain of the considered network. The result reveals that when the transmission rate is below the OSC threshold, the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminal-to-relay links; otherwise, the diversity gain is zero. This is different from the amplify-and-forward (AF) strategy, under which the relaying links have no contribution to the diversity gain. Simulation results validate the analytical results and reveal that compared with the AF strategy, the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.