Fire frequency effects on plant community characteristics in the Great Basin and Mojave deserts of North America

IF 3.6 3区 环境科学与生态学 Q1 ECOLOGY
Rebekah L. Stanton, Baylie C. Nusink, Kristina L. Cass, Tara B. B. Bishop, Brianna M. Woodbury, David N. Armond, Samuel B. St. Clair
{"title":"Fire frequency effects on plant community characteristics in the Great Basin and Mojave deserts of North America","authors":"Rebekah L. Stanton, Baylie C. Nusink, Kristina L. Cass, Tara B. B. Bishop, Brianna M. Woodbury, David N. Armond, Samuel B. St. Clair","doi":"10.1186/s42408-023-00222-2","DOIUrl":null,"url":null,"abstract":"Abstract Background Wildfire regimes are changing dramatically across North American deserts with the spread of invasive grasses. Invasive grass fire cycles in historically fire-resistant deserts are resulting in larger and more frequent wildfire. This study experimentally compared how single and repeat fires influence invasive grass-dominated plant fuels in the Great Basin, a semi-arid, cold desert, and the Mojave, a hyper-arid desert. Both study sites had identical study designs. In the summer of 2011, we experimentally burned half of each experimental block, the other half remaining as an unburned control. Half of the burned plots were reburned 5 years later to simulate increasing burn frequency. We estimated non-woody plant biomass, cover, and density in plots from 2017 to 2020. Results Biomass did not vary between sites, but there was higher plant cover and lower plant density at the Mojave site than at the Great Basin site. Plant biomass, density, and cover varied significantly across the years, with stronger annual fluctuations in the Great Basin. At both desert sites, fire increased plant density and biomass but had no effect on the cover. The effect of fire on plant cover varied significantly between years for both deserts but was greater in the Great Basin than in the Mojave site. Repeat fires did not amplify initial fire effects. Conclusions The results suggest that in general annual fluctuations in fine fuel production and fluctuations in response to fire were more apparent at the Great Basin site than at the Mojave site, with no immediate compounding effect of repeat fires at either site.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"10 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42408-023-00222-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Background Wildfire regimes are changing dramatically across North American deserts with the spread of invasive grasses. Invasive grass fire cycles in historically fire-resistant deserts are resulting in larger and more frequent wildfire. This study experimentally compared how single and repeat fires influence invasive grass-dominated plant fuels in the Great Basin, a semi-arid, cold desert, and the Mojave, a hyper-arid desert. Both study sites had identical study designs. In the summer of 2011, we experimentally burned half of each experimental block, the other half remaining as an unburned control. Half of the burned plots were reburned 5 years later to simulate increasing burn frequency. We estimated non-woody plant biomass, cover, and density in plots from 2017 to 2020. Results Biomass did not vary between sites, but there was higher plant cover and lower plant density at the Mojave site than at the Great Basin site. Plant biomass, density, and cover varied significantly across the years, with stronger annual fluctuations in the Great Basin. At both desert sites, fire increased plant density and biomass but had no effect on the cover. The effect of fire on plant cover varied significantly between years for both deserts but was greater in the Great Basin than in the Mojave site. Repeat fires did not amplify initial fire effects. Conclusions The results suggest that in general annual fluctuations in fine fuel production and fluctuations in response to fire were more apparent at the Great Basin site than at the Mojave site, with no immediate compounding effect of repeat fires at either site.
火灾频率对北美大盆地和莫哈韦沙漠植物群落特征的影响
随着入侵草的蔓延,北美沙漠的野火制度正在发生巨大变化。在历史上耐火的沙漠中,入侵的草火循环导致更大、更频繁的野火。这项研究通过实验比较了单次和重复火灾对大盆地(半干旱、寒冷的沙漠)和莫哈韦沙漠(极度干旱的沙漠)入侵的以草为主的植物燃料的影响。两个研究地点都有相同的研究设计。在2011年夏天,我们实验性地烧毁了每个实验块的一半,另一半作为未烧毁的对照。一半被烧毁的地块在5年后重新燃烧,以模拟燃烧频率的增加。我们估算了2017 - 2020年样地的非木本植物生物量、盖度和密度。结果不同样地间生物量差异不大,但莫哈韦样地植被覆盖度高于大盆地样地,植被密度低于大盆地样地。植物生物量、密度和覆盖度在不同年份变化显著,大盆地的年波动更大。在这两个沙漠地点,火增加了植物密度和生物量,但对覆盖度没有影响。在这两个沙漠中,火对植物覆盖的影响在不同年份之间差异很大,但在大盆地比在莫哈韦遗址更大。重复的火灾并没有放大最初的火灾效果。结果表明,总体而言,大盆地遗址的精细燃料产量的年波动和对火灾的响应波动比莫哈韦遗址更为明显,并且在两个遗址都没有重复火灾的直接复合效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire Ecology
Fire Ecology ECOLOGY-FORESTRY
CiteScore
6.20
自引率
7.80%
发文量
24
审稿时长
20 weeks
期刊介绍: Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to: Ecology (physical and biological fire effects, fire regimes, etc.) Social science (geography, sociology, anthropology, etc.) Fuel Fire science and modeling Planning and risk management Law and policy Fire management Inter- or cross-disciplinary fire-related topics Technology transfer products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信