Maria E. Angelaki, Manolis N. Romanias, James B. Burkholder, Vassileios C. Papadimitriou
{"title":"Rate coefficients for the gas-phase OH + furan (C4H4O) reaction between 273 and 353 K","authors":"Maria E. Angelaki, Manolis N. Romanias, James B. Burkholder, Vassileios C. Papadimitriou","doi":"10.1002/kin.21697","DOIUrl":null,"url":null,"abstract":"<p>Rate coefficients, <i>k</i><sub>1</sub>, for the gas-phase OH radical reaction with the heterocyclic ether C<sub>4</sub>H<sub>4</sub>O (1,4-epoxybuta-1,3-diene, furan) were measured over the temperature range 273–353 K at 760 Torr (syn. air). Experiments were performed using: (i) the photochemical smog chamber THALAMOS (thermally regulated atmospheric simulation chamber, IMT NE, Douai-France) equipped with Fourier Transform Infrared (FTIR) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) detection methods and (ii) a photochemical reactor coupled with FTIR spectroscopy (PCR, University of Crete, Greece). <i>k</i><sub>1</sub>(273–353 K) was measured using a relative rate (RR) method, in which the loss of furan was measured relative to the loss of reference compounds with well-established OH reaction rate coefficients. <i>k</i><sub>1</sub>(273–353 K) was found to be well represented by the Arrhenius expression (1.30 ± 0.12) × 10<sup>−11</sup> exp[(336 ± 20)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>, with <i>k</i><sub>1</sub>(296 K) measured to be (4.07 ± 0.32) × 10<sup>−11</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. The <i>k</i><sub>1</sub>(296 K) and pre-exponential quoted error limits are 2σ and include estimated systematic errors in the reference rate coefficients. The observed negative temperature dependence is consistent with a reaction mechanism involving the OH radical association to a furan double bond. Quantum mechanical molecular calculations show that OH addition to the <i>α</i>-carbon (Δ<i>H</i><sub>r</sub>(296 K) = −121.5 kJ mol<sup>−1</sup>) is thermochemically favored over the <i>β</i>-carbon (Δ<i>H</i><sub>r</sub>(296 K) = −52.9 kJ mol<sup>−1</sup>) addition. The OH-furan adduct was found to be stable over the temperature range of the present measurements. Maleic anhydride (C<sub>4</sub>H<sub>2</sub>O<sub>3</sub>) was identified as a minor reaction product, 3% lower-limit yield, demonstrating a non-ring-opening active reaction channel. The present results are critically compared with results from previous studies of the OH + furan reaction rate coefficient. The infrared spectrum of furan was measured as part of this study and its estimated climate metrics are reported.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21697","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rate coefficients, k1, for the gas-phase OH radical reaction with the heterocyclic ether C4H4O (1,4-epoxybuta-1,3-diene, furan) were measured over the temperature range 273–353 K at 760 Torr (syn. air). Experiments were performed using: (i) the photochemical smog chamber THALAMOS (thermally regulated atmospheric simulation chamber, IMT NE, Douai-France) equipped with Fourier Transform Infrared (FTIR) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) detection methods and (ii) a photochemical reactor coupled with FTIR spectroscopy (PCR, University of Crete, Greece). k1(273–353 K) was measured using a relative rate (RR) method, in which the loss of furan was measured relative to the loss of reference compounds with well-established OH reaction rate coefficients. k1(273–353 K) was found to be well represented by the Arrhenius expression (1.30 ± 0.12) × 10−11 exp[(336 ± 20)/T] cm3 molecule−1 s−1, with k1(296 K) measured to be (4.07 ± 0.32) × 10−11 cm3 molecule−1 s−1. The k1(296 K) and pre-exponential quoted error limits are 2σ and include estimated systematic errors in the reference rate coefficients. The observed negative temperature dependence is consistent with a reaction mechanism involving the OH radical association to a furan double bond. Quantum mechanical molecular calculations show that OH addition to the α-carbon (ΔHr(296 K) = −121.5 kJ mol−1) is thermochemically favored over the β-carbon (ΔHr(296 K) = −52.9 kJ mol−1) addition. The OH-furan adduct was found to be stable over the temperature range of the present measurements. Maleic anhydride (C4H2O3) was identified as a minor reaction product, 3% lower-limit yield, demonstrating a non-ring-opening active reaction channel. The present results are critically compared with results from previous studies of the OH + furan reaction rate coefficient. The infrared spectrum of furan was measured as part of this study and its estimated climate metrics are reported.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.