{"title":"A detailed reaction mechanism for hexamethyldisiloxane combustion via experiments and ReaxFF molecular dynamics simulations","authors":"Yaosong Huang, Hao Chen","doi":"10.1002/kin.21698","DOIUrl":null,"url":null,"abstract":"<p>Hexamethyldisiloxane (HMDSO) is one of the main impurities in the syngas produced from sewage and landfill plants. In order to utilize this syngas or control the characteristics of the generated silica particles, it is crucial to understand the chemical kinetics of HMDSO combustion. This study investigated the process of HMDSO combustion using synchrotron radiation mass spectrometry (SRMS), gas chromatography (GC), and ReaxFF molecular dynamics simulations. First, the force field used for ReaxFF simulation was validated by comparing the energies of different bond lengths, bond angles, and dihedral angles with the ones from DFT calculations. Good agreements were found. Then, ReaxFF simulations of HMDSO combustion with this force field were conducted under various conditions, which include different equivalence ratios (0.67, 1.0, and 1.5) and temperatures ranging from 2000 to 3500 K. The oxidation characteristics of HMDSO were analyzed, including the evolution of gas products and particle formation. Finally, based on the results from experiments and ReaxFF simulations, the reaction pathways, reaction lists, and reaction kinetics data during HMDSO combustion were obtained. A detailed reaction mechanism was proposed and validated by applying it in modeling the H<sub>2</sub>/HMDSO/O<sub>2</sub> combustion systems. The temperature and part of the gas products such as CO and CO<sub>2</sub> as well as SiO could be well predicted.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21698","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hexamethyldisiloxane (HMDSO) is one of the main impurities in the syngas produced from sewage and landfill plants. In order to utilize this syngas or control the characteristics of the generated silica particles, it is crucial to understand the chemical kinetics of HMDSO combustion. This study investigated the process of HMDSO combustion using synchrotron radiation mass spectrometry (SRMS), gas chromatography (GC), and ReaxFF molecular dynamics simulations. First, the force field used for ReaxFF simulation was validated by comparing the energies of different bond lengths, bond angles, and dihedral angles with the ones from DFT calculations. Good agreements were found. Then, ReaxFF simulations of HMDSO combustion with this force field were conducted under various conditions, which include different equivalence ratios (0.67, 1.0, and 1.5) and temperatures ranging from 2000 to 3500 K. The oxidation characteristics of HMDSO were analyzed, including the evolution of gas products and particle formation. Finally, based on the results from experiments and ReaxFF simulations, the reaction pathways, reaction lists, and reaction kinetics data during HMDSO combustion were obtained. A detailed reaction mechanism was proposed and validated by applying it in modeling the H2/HMDSO/O2 combustion systems. The temperature and part of the gas products such as CO and CO2 as well as SiO could be well predicted.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.