Pascal Hinrichs, Kathrin Seibert, Pedro Arizpe Gómez, Max Pfingsthorn, Andreas Hein
{"title":"A Robotic System to Anchor a Patient in a Lateral Position and Reduce Nurses’ Physical Strain","authors":"Pascal Hinrichs, Kathrin Seibert, Pedro Arizpe Gómez, Max Pfingsthorn, Andreas Hein","doi":"10.3390/robotics12050144","DOIUrl":null,"url":null,"abstract":"Robotic manipulators can interact with large, heavy objects through whole-arm manipulation. Combined with direct physical interaction between humans and robots, the patient can be anchored in care. However, the complexity of this scenario requires control by a caregiver. We are investigating how such a complex form of manipulation can be controlled by nurses and whether the use of such a system creates physical relief. The use case chosen was washing the back of a patient in the lateral position. The operability of the remote control from the tele-nurse’s point of view, the change in the posture of the nurse on site, the execution times, the evaluation of the cooperation between human and robot, and the evaluation of the system from the nurse’s point of view and from the patient’s point of view were evaluated. The results show that the posture of the worker improved by 11.93% on average, and by a maximum of 26.13%. Ease of use is rated as marginally high. The manipulator is considered helpful. The study shows that remote whole-arm manipulation can anchor bedridden patients in the lateral position and that this system can be operated by nurses and leads to an improvement in working posture.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"37 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12050144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic manipulators can interact with large, heavy objects through whole-arm manipulation. Combined with direct physical interaction between humans and robots, the patient can be anchored in care. However, the complexity of this scenario requires control by a caregiver. We are investigating how such a complex form of manipulation can be controlled by nurses and whether the use of such a system creates physical relief. The use case chosen was washing the back of a patient in the lateral position. The operability of the remote control from the tele-nurse’s point of view, the change in the posture of the nurse on site, the execution times, the evaluation of the cooperation between human and robot, and the evaluation of the system from the nurse’s point of view and from the patient’s point of view were evaluated. The results show that the posture of the worker improved by 11.93% on average, and by a maximum of 26.13%. Ease of use is rated as marginally high. The manipulator is considered helpful. The study shows that remote whole-arm manipulation can anchor bedridden patients in the lateral position and that this system can be operated by nurses and leads to an improvement in working posture.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM