Multi-step Time Series Forecasting for Hypermarket Sales Using Temporal Fusion Transformers

Sehee An, Jae-Yoon Jung
{"title":"Multi-step Time Series Forecasting for Hypermarket Sales Using Temporal Fusion Transformers","authors":"Sehee An, Jae-Yoon Jung","doi":"10.7838/jsebs.2023.28.3.043","DOIUrl":null,"url":null,"abstract":"수요예측은 모든 산업에서 사업 기획 및 운영 계획의 중요한 기초 자료로 사용된다. 본 논문에서는 수요예측 경진대회인 M5 Competition 데이터를 대상으로 Temporal Fusion Transformer(TFT) 모형을 적용하였고, 이 대회에서 우승한 DRFAM 기법과 정확도를 비교하였다. M5 Competition의 Walmart 데이터셋 중 CA_1 매장의 판매량 데이터를 대상으로 성능을 평가하였으며, 매장(store) 수준과 카테고리(category) 수준의 데이터풀(data pool)로 각각 TFT 모형을 학습한 후 예측값을 산술평균하는 방식을 사용하였다. 그 결과, 세 가지 수준의 데이터풀에 대해 직접적 예측모형(direct forecasting)과 재귀적 예측모형(recursive forecasting)으로 총 6개의 LightGBM 모형을 학습하여 산술평균으로 예측하는 DRFAM 기법보다 평균적으로 개선된 예측 정확도를 달성하였다. 이를 통해 TFT 모형이 자기-어텐션 구조를 사용하여 시계열에서 변수와 판매량 간의 관계를 충분히 학습하였음을 알 수 있었다. DRFAM 기법의 직접적 예측모형과 재귀적 예측모형이 28일 간의 예측을 위하여 28회 반복호출을 해야 하지만, TFT 모형은 다중 출력 구조이기 때문에 한번 모형 호출로 28개의 시계열 예측이 가능하다. 본 논문에서 제안한 TFT 기반의 예측모형은 보다 빠르고 정확한 시계열 예측을 제공하여 다양한 분야에 확대 적용할 수 있을 것으로 기대한다.","PeriodicalId":493933,"journal":{"name":"한국전자거래학회지","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"한국전자거래학회지","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7838/jsebs.2023.28.3.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

수요예측은 모든 산업에서 사업 기획 및 운영 계획의 중요한 기초 자료로 사용된다. 본 논문에서는 수요예측 경진대회인 M5 Competition 데이터를 대상으로 Temporal Fusion Transformer(TFT) 모형을 적용하였고, 이 대회에서 우승한 DRFAM 기법과 정확도를 비교하였다. M5 Competition의 Walmart 데이터셋 중 CA_1 매장의 판매량 데이터를 대상으로 성능을 평가하였으며, 매장(store) 수준과 카테고리(category) 수준의 데이터풀(data pool)로 각각 TFT 모형을 학습한 후 예측값을 산술평균하는 방식을 사용하였다. 그 결과, 세 가지 수준의 데이터풀에 대해 직접적 예측모형(direct forecasting)과 재귀적 예측모형(recursive forecasting)으로 총 6개의 LightGBM 모형을 학습하여 산술평균으로 예측하는 DRFAM 기법보다 평균적으로 개선된 예측 정확도를 달성하였다. 이를 통해 TFT 모형이 자기-어텐션 구조를 사용하여 시계열에서 변수와 판매량 간의 관계를 충분히 학습하였음을 알 수 있었다. DRFAM 기법의 직접적 예측모형과 재귀적 예측모형이 28일 간의 예측을 위하여 28회 반복호출을 해야 하지만, TFT 모형은 다중 출력 구조이기 때문에 한번 모형 호출로 28개의 시계열 예측이 가능하다. 본 논문에서 제안한 TFT 기반의 예측모형은 보다 빠르고 정확한 시계열 예측을 제공하여 다양한 분야에 확대 적용할 수 있을 것으로 기대한다.
基于时间融合变压器的大卖场销售多步时间序列预测
需求预测在所有产业中都被用作事业企划及运营计划的重要基础资料。本论文以需求预测竞赛M5 Competition数据为对象,采用了Temporal Fusion Transformer(TFT)模型,并比较了在该比赛中获胜的DRFAM技术的准确度。在M5 Competition的Walmart数据集中,以c_1卖场的销量数据为对象进行了性能评估,并使用了卖场(store)水平和category水平的data pool分别学习TFT模型后的预测值进行算术平均。结果,对于三种水平的数据集,利用直接预测模型和递归预测模型共学习了6个LightGBM模型,达到了比用算术平均预测的DRFAM技术平均改善的预测准确度。这表明TFT模型使用了磁-张力结构,充分学习了时间序列中变数和销售量之间的关系。DRFAM技术的直接预测模型和递归预测模型需要28次重复调用来进行28天的预测,但是TFT模型是多输出结构,因此通过一次模型调用就可以预测28个时间序列。本论文提出的以TFT为基础的预测模型有望提供更快、准确的时间序列预测,扩大应用于多种领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信