Implementation and Performance Comparison of Deep Learning Models for Road Flooding Detection

Hui-Seong Noh, Ki-Hong Park
{"title":"Implementation and Performance Comparison of Deep Learning Models for Road Flooding Detection","authors":"Hui-Seong Noh, Ki-Hong Park","doi":"10.14801/jkiit.2023.21.8.185","DOIUrl":null,"url":null,"abstract":"기존의 단일 센서를 이용한 도로 침수 시스템은 수위가 특정 수치에 도달할 때 경보를 주는 방식으로 도로침수 판단 및 초동대처가 어렵다. 따라서 본 논문에서는 CCTV를 이용한 실시간 도로 침수 시스템 개발을 위해 CNN 기반의 사전 학습모델 8개를 선정 및 구현, 학습 및 검증을 통해 성능을 비교하였다. 모델별로 batchsize 16, 120 epoch로 학습하였고, 실험 결과 딥러닝 학습모델들이 평균적으로 90%의 정확도를 보였다. 특히 정확도 측면에서는 ShuffleNet V1, SqueezeNet, ResNet-50 모델 순으로 성능이 우수하였다. 그러나 실시간 도로 침수 탐지와 예측을 위해서는 모델별 적정한 파리미터 수와 짧은 추론 시간이 요구되는 바, CCTV 한대당 10초에 1번씩 분석된다고 가정했을 때 ResNet-50 학습모델이 800대까지 수용할 수 있는 것으로 분석되었다.","PeriodicalId":498669,"journal":{"name":"Journal of Korean Institute of Information Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Institute of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14801/jkiit.2023.21.8.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

기존의 단일 센서를 이용한 도로 침수 시스템은 수위가 특정 수치에 도달할 때 경보를 주는 방식으로 도로침수 판단 및 초동대처가 어렵다. 따라서 본 논문에서는 CCTV를 이용한 실시간 도로 침수 시스템 개발을 위해 CNN 기반의 사전 학습모델 8개를 선정 및 구현, 학습 및 검증을 통해 성능을 비교하였다. 모델별로 batchsize 16, 120 epoch로 학습하였고, 실험 결과 딥러닝 학습모델들이 평균적으로 90%의 정확도를 보였다. 특히 정확도 측면에서는 ShuffleNet V1, SqueezeNet, ResNet-50 모델 순으로 성능이 우수하였다. 그러나 실시간 도로 침수 탐지와 예측을 위해서는 모델별 적정한 파리미터 수와 짧은 추론 시간이 요구되는 바, CCTV 한대당 10초에 1번씩 분석된다고 가정했을 때 ResNet-50 학습모델이 800대까지 수용할 수 있는 것으로 분석되었다.
道路洪水检测中深度学习模型的实现与性能比较
现有的利用单一传感器的道路浸水系统以水位达到特定数值时发出警报的方式,很难判断道路浸水及初期应对。因此,本论文为了开发利用闭路电视的实时道路浸水系统,选定并体现了以CNN为基础的8个事前学习模型,通过学习及验证比较了性能。batchsize 16,120 epoch进行了不同型号的学习,实验结果显示深度学习模型的平均准确度为90%。特别是在准确度方面,以ShuffleNet V1、SqueezeNet、ResNet-50为顺序,性能非常优秀。但据分析,为了实时探测和预测道路浸水,各型号需要适当的苍蝇公尺数和短的推论时间,如果每台闭路电视每10秒分析一次,ResNet-50学习型号最多可以容纳800台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信