{"title":"Efficient AIoT Resource Management Techniques Reflecting Virtualization Resource Allocation in Production Environments","authors":"Yoon-Su Jeong, Yong-Tae Kim","doi":"10.14801/jkiit.2023.21.8.121","DOIUrl":null,"url":null,"abstract":"인공지능과 사물인터넷의 융합이 가속화되면서 오늘날 많은 기업들이 경쟁력과 효율성을 높이기 위해 산업현장에서 AIoT를 광범위하게 사용하고 있다. 산업 현장에서 컴퓨팅 집약적이고 리소스 집약적인 네트워크 에지는 효율적이지만, 리소스 용량 및 전력 예산에는 낮은 대기 시간과 에너지 효율성을 높일 수 있는 관리 방법이 필요하다. 본 논문에서는 AIoT 자원 관리의 모델 성능(정확성 및 견고성)과 자원 비용을 동시에 최적화 할 수 있는 가상화된 자원 할당 기반 AIoT 자원 관리 기법을 제안한다. 제안 방법은 랴푸노프(Lyapunov) 최적화 이론을 사용하여 에지 및 클라우드 리소스의 병목 현상을 최소화하여 저비용으로 지속적인 학습을 수행한다. 또한, 제안 방법은 AIoT 리소스의 지속적인 학습 모델에 가중치를 지속적으로 업데이트하여 가상화 리소스 할당을 통해 리소스의 처리 지연 및 네트워크 오버헤드를 최소화한다.","PeriodicalId":498669,"journal":{"name":"Journal of Korean Institute of Information Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Institute of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14801/jkiit.2023.21.8.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
인공지능과 사물인터넷의 융합이 가속화되면서 오늘날 많은 기업들이 경쟁력과 효율성을 높이기 위해 산업현장에서 AIoT를 광범위하게 사용하고 있다. 산업 현장에서 컴퓨팅 집약적이고 리소스 집약적인 네트워크 에지는 효율적이지만, 리소스 용량 및 전력 예산에는 낮은 대기 시간과 에너지 효율성을 높일 수 있는 관리 방법이 필요하다. 본 논문에서는 AIoT 자원 관리의 모델 성능(정확성 및 견고성)과 자원 비용을 동시에 최적화 할 수 있는 가상화된 자원 할당 기반 AIoT 자원 관리 기법을 제안한다. 제안 방법은 랴푸노프(Lyapunov) 최적화 이론을 사용하여 에지 및 클라우드 리소스의 병목 현상을 최소화하여 저비용으로 지속적인 학습을 수행한다. 또한, 제안 방법은 AIoT 리소스의 지속적인 학습 모델에 가중치를 지속적으로 업데이트하여 가상화 리소스 할당을 통해 리소스의 처리 지연 및 네트워크 오버헤드를 최소화한다.