Research of Knee K-L Grade Classification using AI and Explainable Model

Junhee Choi, Hwa-Kyu Lee, Hyun-Sug Cho
{"title":"Research of Knee K-L Grade Classification using AI and Explainable Model","authors":"Junhee Choi, Hwa-Kyu Lee, Hyun-Sug Cho","doi":"10.14801/jkiit.2023.21.8.133","DOIUrl":null,"url":null,"abstract":"퇴행성 관절염은 관절 연골이 닳게 되면서 퇴행적인 변화가 나타나는 질환이다. 무릎 퇴행성 관절염의 K-Lgrade 단계를 진단하기 위해서 일반적으로 X-ray 영상을 활용하며, 무릎 관절의 간격, 연골의 소실 정도, 골극의 형성으로 K-L grade를 판단한다. 정상 및 K-L grade 1~4단계로 구분된 데이터셋을 활용하였으며, CNN 알고리즘은 DarkNet-53 모델을 활용하였다. K-L grade 단계 구분과 골관절염 발생 여부에 대한 실험을 통해 Top-1, Top-2의 성능지표 결과를 확인하였다. K-L grade 단계의 근거가 되는 관절 간격을 측정하였고 뼈의 각도를 측정하는 알고리즘을 제안하였다. 실험 결과로 Top-2의 경우 K-L grade 단계 분류 정확도가 0.828의 결과를 보였으며, 향후 무릎 관절의 이상 징후 탐지 보조와 학습 데이터 가공 과정에 활용될 것으로 기대된다.","PeriodicalId":498669,"journal":{"name":"Journal of Korean Institute of Information Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Institute of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14801/jkiit.2023.21.8.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

퇴행성 관절염은 관절 연골이 닳게 되면서 퇴행적인 변화가 나타나는 질환이다. 무릎 퇴행성 관절염의 K-Lgrade 단계를 진단하기 위해서 일반적으로 X-ray 영상을 활용하며, 무릎 관절의 간격, 연골의 소실 정도, 골극의 형성으로 K-L grade를 판단한다. 정상 및 K-L grade 1~4단계로 구분된 데이터셋을 활용하였으며, CNN 알고리즘은 DarkNet-53 모델을 활용하였다. K-L grade 단계 구분과 골관절염 발생 여부에 대한 실험을 통해 Top-1, Top-2의 성능지표 결과를 확인하였다. K-L grade 단계의 근거가 되는 관절 간격을 측정하였고 뼈의 각도를 측정하는 알고리즘을 제안하였다. 실험 결과로 Top-2의 경우 K-L grade 단계 분류 정확도가 0.828의 결과를 보였으며, 향후 무릎 관절의 이상 징후 탐지 보조와 학습 데이터 가공 과정에 활용될 것으로 기대된다.
基于AI和可解释模型的膝关节K-L等级分类研究
退行性关节炎是随着关节软骨磨损而出现退行性变化的疾病。为了诊断膝盖退行性关节炎的K-Lgrade阶段,通常使用X光影像,通过膝关节的间隔、软骨的消失程度、骨剧的形成来判断K-Lgrade。使用了分为正常和K-L grade 1 - 4级的数据集,CNN算法使用了DarkNet-53模型。通过K-L grade阶段的区分和是否发生骨关节炎的实验,确认了Top-1、Top-2的性能指标结果。他测量了K-L梯度阶段的关节间隔,并提出了测量骨头角度的算法。实验结果显示,Top-2的K-L梯度分类准确度为0.828,今后将用于膝盖关节异常征兆探测辅助和学习数据加工过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信