{"title":"New Thermodynamic Equation of State for Refrigerant HFO-1243zf","authors":"I Made ASTİNA, Hilmy Ilham ALFİSAHRİ","doi":"10.5541/ijot.1248571","DOIUrl":null,"url":null,"abstract":"R-1243zf is a new refrigerant that could replace R-134a. Its thermodynamic properties represented in the equation of state (EOS) play an essential role in analyzing and designing thermal systems. The EOS exists without including caloric property data due to unavailable data during the development time. New EOS was developed explicitly in Helmholtz free energy and optimized to represent the experimental data accurately and maintain thermodynamic consistency. The optimization process undergoes using a genetic algorithm and weighted-least squares regression. The experimental data used in the optimization have a range of 233–430 K and 0.106–34.6 MPa and were validated from the extrapolation and consistency to confirm the reliability. The average absolute deviation from the data is 0.48% for the ideal gas isobaric specific heat, 1.7% for the isochoric specific heat, 0.33% for the speed of sound, 0.22% for the liquid density in single-phase, 0.49% for the vapor density in single-phase, 0.96% for the vapor pressure, 2.2% for the saturated liquid density, and 3.2% for the saturated vapor density. The EOS has a reasonable extrapolation behavior from the triple point up to 700 K and 100 MPa.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1248571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
R-1243zf is a new refrigerant that could replace R-134a. Its thermodynamic properties represented in the equation of state (EOS) play an essential role in analyzing and designing thermal systems. The EOS exists without including caloric property data due to unavailable data during the development time. New EOS was developed explicitly in Helmholtz free energy and optimized to represent the experimental data accurately and maintain thermodynamic consistency. The optimization process undergoes using a genetic algorithm and weighted-least squares regression. The experimental data used in the optimization have a range of 233–430 K and 0.106–34.6 MPa and were validated from the extrapolation and consistency to confirm the reliability. The average absolute deviation from the data is 0.48% for the ideal gas isobaric specific heat, 1.7% for the isochoric specific heat, 0.33% for the speed of sound, 0.22% for the liquid density in single-phase, 0.49% for the vapor density in single-phase, 0.96% for the vapor pressure, 2.2% for the saturated liquid density, and 3.2% for the saturated vapor density. The EOS has a reasonable extrapolation behavior from the triple point up to 700 K and 100 MPa.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.