Mo-Rigen He, Ruopeng Zhang, Rohan Dhall, Andrew M. Minor, Kevin J. Hemker
{"title":"In situ TEM study of the thermal stability of nanotwinned Ni-Mo-W alloys","authors":"Mo-Rigen He, Ruopeng Zhang, Rohan Dhall, Andrew M. Minor, Kevin J. Hemker","doi":"10.1080/21663831.2023.2255321","DOIUrl":null,"url":null,"abstract":"Microstructural evolution in nanotwinned Ni-Mo-W alloys under in situ heating experiments is investigated in a transmission electron microscope. Migration of twin boundaries and grain boundaries as well as formation of carbide precipitates are observed at various temperatures and characterized at atomic resolution. These transformations are found to occur at temperatures that are ∼200°C lower in Mo-rich (Ni85Mo13W2) specimens than in W-rich (Ni86Mo3W11) specimens, which highlights the different efficacy of Mo and W solutes in stabilizing the nanotwinned structure. Inspection of various mechanisms points to the importance of elastic modulus mismatch as a pathway for enhancing nanotwin stability by alloying. GRAPHICAL ABSTRACT IMPACT STATEMENT We present the first in situ and atomic-resolution study of the thermal stability of nanotwinned alloys. Comparison of Mo-rich and W-rich Ni-Mo-W alloys uncovers the nontrivial role of solute species.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"364 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2255321","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microstructural evolution in nanotwinned Ni-Mo-W alloys under in situ heating experiments is investigated in a transmission electron microscope. Migration of twin boundaries and grain boundaries as well as formation of carbide precipitates are observed at various temperatures and characterized at atomic resolution. These transformations are found to occur at temperatures that are ∼200°C lower in Mo-rich (Ni85Mo13W2) specimens than in W-rich (Ni86Mo3W11) specimens, which highlights the different efficacy of Mo and W solutes in stabilizing the nanotwinned structure. Inspection of various mechanisms points to the importance of elastic modulus mismatch as a pathway for enhancing nanotwin stability by alloying. GRAPHICAL ABSTRACT IMPACT STATEMENT We present the first in situ and atomic-resolution study of the thermal stability of nanotwinned alloys. Comparison of Mo-rich and W-rich Ni-Mo-W alloys uncovers the nontrivial role of solute species.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.