{"title":"CP-violating axion interactions II: axions as dark matter","authors":"V. Plakkot, W. Dekens, J. de Vries, S. Shain","doi":"10.1007/jhep11(2023)012","DOIUrl":null,"url":null,"abstract":"A bstract Axions provide a solution to the strong CP problem and are excellent dark matter candidates. The presence of additional sources of CP violation, for example to account for the matter/antimatter asymmetry of the universe, can lead to CP-violating interactions between axions and Standard Model fields. In case axions form a coherent dark matter background, this leads to time-oscillating fundamental constants such as the fine-structure constant and particle masses. In this work we compare the sensitivity of various searches for CP-odd axion interactions. These include fifth-force experiments, searches for time-oscillating constants induced by axion dark matter, and direct limits from electric dipole moment experiments. We show that searches for oscillating constants can outperform fifth-force experiments in the regime of small axion masses, but, in general, do not reach the sensitivity of electric dipole moment experiments.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"104 3","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)012","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
A bstract Axions provide a solution to the strong CP problem and are excellent dark matter candidates. The presence of additional sources of CP violation, for example to account for the matter/antimatter asymmetry of the universe, can lead to CP-violating interactions between axions and Standard Model fields. In case axions form a coherent dark matter background, this leads to time-oscillating fundamental constants such as the fine-structure constant and particle masses. In this work we compare the sensitivity of various searches for CP-odd axion interactions. These include fifth-force experiments, searches for time-oscillating constants induced by axion dark matter, and direct limits from electric dipole moment experiments. We show that searches for oscillating constants can outperform fifth-force experiments in the regime of small axion masses, but, in general, do not reach the sensitivity of electric dipole moment experiments.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).