{"title":"A shaped collaborative representation-based detector for hyperspectral anomaly detection","authors":"Maryam Imani","doi":"10.1080/2150704x.2023.2275549","DOIUrl":null,"url":null,"abstract":"ABSTRACTA modified version of the collaborative representation-based detector (CRD) is proposed for hyperspectral anomaly detection. In contrast to the conventional CRD, which uses a rectangular dual window, the shaped CRD (SCRD) selects the most appropriate neighbours from the dual window and discards the inappropriate ones. To this end, similarity of the neighbouring pixels to the centre is computed based on the cosine distance to utilize the local information. In addition, the low/high occurrence probability of anomalies/background exhibited in the histogram of the whole image is utilized as global information to find the closest neighbours to the background. The shaped dual window is used for linear approximation of pixels through the collaborative representation. SCRD improves the anomaly detection results with respect to some related works. Experiments on two hyperspectral images show that SCRD results in more accurate detection maps with a bit higher running time compared to CRD.KEYWORDS: collaborative representationdual windowhyperspectral imageanomaly detection Disclosure statementNo potential conflict of interest was reported by the author.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2150704x.2023.2275549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTA modified version of the collaborative representation-based detector (CRD) is proposed for hyperspectral anomaly detection. In contrast to the conventional CRD, which uses a rectangular dual window, the shaped CRD (SCRD) selects the most appropriate neighbours from the dual window and discards the inappropriate ones. To this end, similarity of the neighbouring pixels to the centre is computed based on the cosine distance to utilize the local information. In addition, the low/high occurrence probability of anomalies/background exhibited in the histogram of the whole image is utilized as global information to find the closest neighbours to the background. The shaped dual window is used for linear approximation of pixels through the collaborative representation. SCRD improves the anomaly detection results with respect to some related works. Experiments on two hyperspectral images show that SCRD results in more accurate detection maps with a bit higher running time compared to CRD.KEYWORDS: collaborative representationdual windowhyperspectral imageanomaly detection Disclosure statementNo potential conflict of interest was reported by the author.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.