Bubbles of cosmology in AdS/CFT

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Abhisek Sahu, Petar Simidzija, Mark Van Raamsdonk
{"title":"Bubbles of cosmology in AdS/CFT","authors":"Abhisek Sahu, Petar Simidzija, Mark Van Raamsdonk","doi":"10.1007/jhep11(2023)010","DOIUrl":null,"url":null,"abstract":"A bstract Gravitational effective theories associated with holographic CFTs have cosmological solutions, which are typically big-bang/big-crunch cosmologies. These solutions are not asymptotically AdS, so they are not dual to finite-energy states of the CFT. However, we can find solutions with arbitrarily large spherical bubbles of such cosmologies embedded in asymptotically AdS spacetimes where the exterior of the bubble is Schwarzschild-AdS. In this paper, we explore such solutions and their possible CFT dual descriptions. Starting with a cosmological solution with Λ < 0 plus arbitrary matter density, radiation density, and spatial curvature, we show that a comoving bubble of arbitrary size can be embedded in a geometry with AdS-Schwarzschild exterior across a thin-shell domain wall comprised of pressureless matter. We show that in most cases (in particular, for arbitrarily large bubbles with an arbitrarily small negative spatial curvature) the entropy of the black hole exceeds the (radiation) entropy in the cosmological bubble, suggesting that a faithful CFT description is possible. We show that unlike the case of a de Sitter bubble, the Euclidean continuation of these cosmological solutions is sensible and suggests a specific construction of CFT states dual to the cosmological solutions via Euclidean path integral.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"224 S2","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)010","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

A bstract Gravitational effective theories associated with holographic CFTs have cosmological solutions, which are typically big-bang/big-crunch cosmologies. These solutions are not asymptotically AdS, so they are not dual to finite-energy states of the CFT. However, we can find solutions with arbitrarily large spherical bubbles of such cosmologies embedded in asymptotically AdS spacetimes where the exterior of the bubble is Schwarzschild-AdS. In this paper, we explore such solutions and their possible CFT dual descriptions. Starting with a cosmological solution with Λ < 0 plus arbitrary matter density, radiation density, and spatial curvature, we show that a comoving bubble of arbitrary size can be embedded in a geometry with AdS-Schwarzschild exterior across a thin-shell domain wall comprised of pressureless matter. We show that in most cases (in particular, for arbitrarily large bubbles with an arbitrarily small negative spatial curvature) the entropy of the black hole exceeds the (radiation) entropy in the cosmological bubble, suggesting that a faithful CFT description is possible. We show that unlike the case of a de Sitter bubble, the Euclidean continuation of these cosmological solutions is sensible and suggests a specific construction of CFT states dual to the cosmological solutions via Euclidean path integral.
AdS/CFT中的宇宙学气泡
与全息cft相关的抽象引力有效理论有宇宙学解,这是典型的大爆炸/大压缩宇宙学。这些解不是渐近ad,因此它们不是对偶于CFT的有限能态。然而,我们可以找到这样的宇宙学的任意大的球形气泡的解嵌入在渐近的AdS时空中,其中气泡的外部是史瓦西-AdS。本文探讨了这类解及其可能的CFT对偶描述。从一个宇宙学解开始Λ <0加上任意物质密度、辐射密度和空间曲率,我们证明了任意大小的运动气泡可以嵌入具有AdS-Schwarzschild外部的几何结构中,穿过由无压物质组成的薄壳畴壁。我们表明,在大多数情况下(特别是对于具有任意小的负空间曲率的任意大的气泡),黑洞的熵超过了宇宙气泡中的(辐射)熵,这表明忠实的CFT描述是可能的。我们证明了不同于德西特气泡的情况,这些宇宙学解的欧几里得延拓是合理的,并提出了通过欧几里得路径积分对宇宙学解对偶的CFT态的具体构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信