Integrability of $$ \mathcal{N} $$ = 1 supersymmetric Ruijsenaars-Schneider three-body system

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Anton Galajinsky
{"title":"Integrability of $$ \\mathcal{N} $$ = 1 supersymmetric Ruijsenaars-Schneider three-body system","authors":"Anton Galajinsky","doi":"10.1007/jhep11(2023)008","DOIUrl":null,"url":null,"abstract":"A bstract An $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> = 1 supersymmetric extension of the Ruijsenaars-Schneider three-body model is constructed and its integrability is established. In particular, three functionally independent Grassmann-odd constants of the motion are given and their algebraic resolvability is proven. The supersymmetric generalization is used to build a novel integrable isospin extension of the Ruijsenaars-Schneider three-body system.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"35 4","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)008","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

A bstract An $$ \mathcal{N} $$ N = 1 supersymmetric extension of the Ruijsenaars-Schneider three-body model is constructed and its integrability is established. In particular, three functionally independent Grassmann-odd constants of the motion are given and their algebraic resolvability is proven. The supersymmetric generalization is used to build a novel integrable isospin extension of the Ruijsenaars-Schneider three-body system.
$$ \mathcal{N} $$ = 1超对称rujsenaars - schneider三体系统的可积性
构造了rujsenaars - schneider三体模型的$$ \mathcal{N} $$ N = 1超对称推广,并证明了其可积性。特别地,给出了运动的三个函数无关的格拉斯曼奇常数,并证明了它们的代数可分辨性。利用超对称推广建立了rujsenaars - schneider三体系统的一种新的可积同位旋扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信