Large mission implementation lessons from history

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE
H. Philip Stahl
{"title":"Large mission implementation lessons from history","authors":"H. Philip Stahl","doi":"10.1117/1.jatis.10.1.011203","DOIUrl":null,"url":null,"abstract":"Pathways to Discovery in Astronomy and Astrophysics for the 2020s has recommended a Great Observatory Maturation Program (GOMaP) to invest in co-maturation of mission concepts and technologies to inform an analysis of alternatives study for an ∼6 m off-axis inscribed telescope. The purpose of this telescope is to sample atmospheric spectra of around 25 potentially habitable exoplanets using ultraviolet, visible, and near-infrared wavelengths; it is planned to launch in the early 2040s with a total cost of less than $11B, including 5 years of operation. A historical review of past missions yields basic programmatic lessons learned to be considered as the community prepares to implement the Decadal Vision. First, technology development is critical for enabling missions. The robustness, breadth, and duration of concept/technology co-maturation is important for mission success. Second, NASA has never “exactly” implemented a Decadal mission as it was recommended. Third, all missions have the same basic technology challenges of mass constraints: mechanical and thermal stability to design, building a space telescope that achieves the required on-orbit performance, and verifying and validating that performance by test and model correlation. Finally, Decadal missions require sustained community support.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.011203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Pathways to Discovery in Astronomy and Astrophysics for the 2020s has recommended a Great Observatory Maturation Program (GOMaP) to invest in co-maturation of mission concepts and technologies to inform an analysis of alternatives study for an ∼6 m off-axis inscribed telescope. The purpose of this telescope is to sample atmospheric spectra of around 25 potentially habitable exoplanets using ultraviolet, visible, and near-infrared wavelengths; it is planned to launch in the early 2040s with a total cost of less than $11B, including 5 years of operation. A historical review of past missions yields basic programmatic lessons learned to be considered as the community prepares to implement the Decadal Vision. First, technology development is critical for enabling missions. The robustness, breadth, and duration of concept/technology co-maturation is important for mission success. Second, NASA has never “exactly” implemented a Decadal mission as it was recommended. Third, all missions have the same basic technology challenges of mass constraints: mechanical and thermal stability to design, building a space telescope that achieves the required on-orbit performance, and verifying and validating that performance by test and model correlation. Finally, Decadal missions require sustained community support.
从历史上吸取的教训
2020年代天文学和天体物理学的发现之路已经推荐了一个大天文台成熟计划(GOMaP),以投资于任务概念和技术的共同成熟,为一个~ 6米离轴内倾角望远镜的替代研究分析提供信息。这架望远镜的目的是利用紫外线、可见光和近红外波长对大约25颗可能适合居住的系外行星的大气光谱进行采样;它计划在21世纪40年代初发射,总成本不到110亿美元,包括5年的运营。对过去特派团的历史审查可以得出在社区准备执行十年远景时所吸取的基本方案教训。首先,技术发展对实现任务至关重要。概念/技术共同成熟的稳健性、广度和持续时间对任务的成功至关重要。其次,美国宇航局从未“完全”按照建议执行十年任务。第三,所有任务都面临同样的质量约束的基本技术挑战:设计机械和热稳定性,建造一个达到所需在轨性能的空间望远镜,并通过测试和模型关联来验证和验证该性能。最后,十年特派团需要持续的社区支助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信