Optimization of Polyvinyl Alcohol-Based Electrospun Fibers with Bioactive or Electroconductive Phases for Tissue-Engineered Scaffolds

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-10-12 DOI:10.3390/fib11100085
Zeynep Renkler, Iriczalli Cruz Maya, Vincenzo Guarino
{"title":"Optimization of Polyvinyl Alcohol-Based Electrospun Fibers with Bioactive or Electroconductive Phases for Tissue-Engineered Scaffolds","authors":"Zeynep Renkler, Iriczalli Cruz Maya, Vincenzo Guarino","doi":"10.3390/fib11100085","DOIUrl":null,"url":null,"abstract":"The accurate mimicking of the fibrillary structure of the extracellular matrix represents one of the critical aspects of tissue engineering, playing a significant role in cell behavior and functions during the regenerative process. This work proposed the design of PVA-based multi-component membranes as a valuable and highly versatile strategy to support in vitro regeneration of different tissues. PVA can be successfully processed through electrospinning processes, allowing for the integration of other organic/inorganic materials suitable to confer additive bio-functional properties to the fibers to improve their biological response. It was demonstrated that adding polyethylene oxide (PEO) improves fiber processability; moreover, SEM analyses confirmed that blending PVA with PEO or gelatin enables the reduction of fiber size from 1.527 ± 0.66 μm to 0.880 ± 0.30 μm and 0.938 ± 0.245 μm, respectively, also minimizing defect formation. Furthermore, in vitro tests confirmed that gelatin integration allows the formation of bioactive nanofibers with improved biological response in terms of L929 adhesion and proliferation. Lastly, the processability of PVA fibers with conductive phases such as polyvinylpyrrolidone (PVP) or poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has also been verified. From this perspective, they could be promisingly used to design electroactive composite fibers able to support the regeneration process of electrically stimulated tissues such as nerves or muscles.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"4 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11100085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate mimicking of the fibrillary structure of the extracellular matrix represents one of the critical aspects of tissue engineering, playing a significant role in cell behavior and functions during the regenerative process. This work proposed the design of PVA-based multi-component membranes as a valuable and highly versatile strategy to support in vitro regeneration of different tissues. PVA can be successfully processed through electrospinning processes, allowing for the integration of other organic/inorganic materials suitable to confer additive bio-functional properties to the fibers to improve their biological response. It was demonstrated that adding polyethylene oxide (PEO) improves fiber processability; moreover, SEM analyses confirmed that blending PVA with PEO or gelatin enables the reduction of fiber size from 1.527 ± 0.66 μm to 0.880 ± 0.30 μm and 0.938 ± 0.245 μm, respectively, also minimizing defect formation. Furthermore, in vitro tests confirmed that gelatin integration allows the formation of bioactive nanofibers with improved biological response in terms of L929 adhesion and proliferation. Lastly, the processability of PVA fibers with conductive phases such as polyvinylpyrrolidone (PVP) or poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has also been verified. From this perspective, they could be promisingly used to design electroactive composite fibers able to support the regeneration process of electrically stimulated tissues such as nerves or muscles.
具有生物活性或导电相的聚乙烯醇基静电纺丝纤维用于组织工程支架的优化
准确模拟细胞外基质的原纤维结构是组织工程的一个重要方面,在再生过程中对细胞行为和功能起着重要作用。这项工作提出了pva基多组分膜的设计作为一个有价值的和高度通用的策略来支持不同组织的体外再生。PVA可以通过静电纺丝工艺成功加工,允许其他有机/无机材料的整合,以赋予纤维添加剂的生物功能特性,以改善其生物反应。结果表明,聚乙烯氧化物(PEO)的加入提高了纤维的加工性能;此外,SEM分析证实,PVA与PEO或明胶共混可使纤维尺寸分别从1.527±0.66 μm减小到0.880±0.30 μm和0.938±0.245 μm,也最大限度地减少了缺陷的形成。此外,体外试验证实,明胶整合可以形成具有生物活性的纳米纤维,在L929粘附和增殖方面具有更好的生物反应。最后,还验证了导电相如聚乙烯吡罗烷酮(PVP)或聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)的PVA纤维的可加工性。从这个角度来看,它们有望用于设计电活性复合纤维,能够支持电刺激组织(如神经或肌肉)的再生过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信