{"title":"Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method","authors":"Jakiya Sultana, Md Mazedur Rahman, Yanen Wang, Ammar Ahmed, Chen Xiaohu","doi":"10.1007/s40964-023-00516-6","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the effects of 3D printing parameters on the mechanical properties (predominantly tensile properties) of a commercial polylactic acid-based wood fiber composite material known as wood filament. The influence of printing parameters, including layer thickness, infill density, printing speed, and nozzle temperature on the mechanical properties, is studied, and the design of the experiment (DOE) is made through Taguchi L 9 orthogonal array. The specimens for the tensile test are fabricated by the material extrusion (MEX) 3D printer, which is also known as fused deposition modeling (FDM) or fused filament fabrication (FFF). After conducting the tensile test, this research considers four significant outcomes: tensile strength, maximum load, elastic modulus, and elongation at break. Further analysis of the obtained results from mechanical testing is performed through analysis of variance (ANOVA) to determine the significance of each parameter on the mechanical properties. Moreover, prediction and optimization are conducted to verify the obtained results from the DOE. Furthermore, scanning electronic microscopy (SEM) is used to analyze the fracture zones, cracks, voids, and fiber/matrix adhesion of the FDM fabricated parts which demonstrates that the lower layer thickness provides better adhesion and fewer voids between successive layers and thus exhibits better mechanical performance. Graphical abstract","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"8 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00516-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study investigates the effects of 3D printing parameters on the mechanical properties (predominantly tensile properties) of a commercial polylactic acid-based wood fiber composite material known as wood filament. The influence of printing parameters, including layer thickness, infill density, printing speed, and nozzle temperature on the mechanical properties, is studied, and the design of the experiment (DOE) is made through Taguchi L 9 orthogonal array. The specimens for the tensile test are fabricated by the material extrusion (MEX) 3D printer, which is also known as fused deposition modeling (FDM) or fused filament fabrication (FFF). After conducting the tensile test, this research considers four significant outcomes: tensile strength, maximum load, elastic modulus, and elongation at break. Further analysis of the obtained results from mechanical testing is performed through analysis of variance (ANOVA) to determine the significance of each parameter on the mechanical properties. Moreover, prediction and optimization are conducted to verify the obtained results from the DOE. Furthermore, scanning electronic microscopy (SEM) is used to analyze the fracture zones, cracks, voids, and fiber/matrix adhesion of the FDM fabricated parts which demonstrates that the lower layer thickness provides better adhesion and fewer voids between successive layers and thus exhibits better mechanical performance. Graphical abstract
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts