Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, Xi Chen
{"title":"Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification","authors":"Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, Xi Chen","doi":"10.5194/gmd-16-5685-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Despite recent developments in geoscientific (e.g., physics- or data-driven) models, effectively assembling multiple models for approaching a benchmark solution remains challenging in many sub-disciplines of geoscientific fields. Here, we proposed an automated machine-learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Details of the methodology and workflow of AutoML-Ens were provided, and a prototype model was realized with the key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights assigned to the candidate ensemble members. Based on the newly proposed framework, its applications for two real-world examples (i.e., mapping global soil water retention parameters and estimating remotely sensed cropland evapotranspiration) were investigated and discussed. Results showed that compared to conventional ensemble approaches, AutoML-Ens was superior across the datasets (the training, testing, and overall datasets) and environmental gradients with improved performance metrics (e.g., coefficient of determination, Kling–Gupta efficiency, and root-mean-squared error). The better performance suggested the great potential of AutoML-Ens for improving quantification and reducing uncertainty in estimates due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow. In addition to the representative results, we also discussed the interpretational aspects of the used framework and its possible extensions. More importantly, we emphasized the benefits of combining data-driven approaches with physics constraints for geoscientific model ensemble problems with high dimensionality in space and nonlinear behaviors in nature.","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"29 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-16-5685-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Despite recent developments in geoscientific (e.g., physics- or data-driven) models, effectively assembling multiple models for approaching a benchmark solution remains challenging in many sub-disciplines of geoscientific fields. Here, we proposed an automated machine-learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Details of the methodology and workflow of AutoML-Ens were provided, and a prototype model was realized with the key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights assigned to the candidate ensemble members. Based on the newly proposed framework, its applications for two real-world examples (i.e., mapping global soil water retention parameters and estimating remotely sensed cropland evapotranspiration) were investigated and discussed. Results showed that compared to conventional ensemble approaches, AutoML-Ens was superior across the datasets (the training, testing, and overall datasets) and environmental gradients with improved performance metrics (e.g., coefficient of determination, Kling–Gupta efficiency, and root-mean-squared error). The better performance suggested the great potential of AutoML-Ens for improving quantification and reducing uncertainty in estimates due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow. In addition to the representative results, we also discussed the interpretational aspects of the used framework and its possible extensions. More importantly, we emphasized the benefits of combining data-driven approaches with physics constraints for geoscientific model ensemble problems with high dimensionality in space and nonlinear behaviors in nature.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.