Variation of Bulk Modulus, Its First Pressure Derivative, and Thermal Expansion Coefficient with Applied High Hydrostatic Pressure

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Manaf A. Mahammed, Hamsa B. Mohammed
{"title":"Variation of Bulk Modulus, Its First Pressure Derivative, and Thermal Expansion Coefficient with Applied High Hydrostatic Pressure","authors":"Manaf A. Mahammed, Hamsa B. Mohammed","doi":"10.1155/2023/9518475","DOIUrl":null,"url":null,"abstract":"Throughout this work, the equations of variation of the isothermal bulk modulus, its first pressure derivative, and the volumetric thermal expansion coefficient as a function of pressure were derived based on the Birch–Murnaghan equation of state (B–M EOS). The bulk modulus and its first derivative at ambient temperature for nine elements were extracted by fitting the published experimental pressure–volume data to B–M EOS, and the results were compared with other published researches, and there was a good agreement. Moreover, those extracted values were used to study the variation of the isothermal bulk modulus, its first pressure derivative, and the isothermal coefficient of thermal expansion as a function of the applied hydrostatic pressure using the equations that were derived from this work.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9518475","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout this work, the equations of variation of the isothermal bulk modulus, its first pressure derivative, and the volumetric thermal expansion coefficient as a function of pressure were derived based on the Birch–Murnaghan equation of state (B–M EOS). The bulk modulus and its first derivative at ambient temperature for nine elements were extracted by fitting the published experimental pressure–volume data to B–M EOS, and the results were compared with other published researches, and there was a good agreement. Moreover, those extracted values were used to study the variation of the isothermal bulk modulus, its first pressure derivative, and the isothermal coefficient of thermal expansion as a function of the applied hydrostatic pressure using the equations that were derived from this work.
高静水压力下体模量、一阶压力导数及热膨胀系数的变化
在整个研究过程中,基于Birch-Murnaghan状态方程(B-M EOS),推导了等温体积模量的变化方程、它的一阶压力导数以及体积热膨胀系数作为压力的函数。将已发表的实验压力-体积数据拟合到B-M EOS中,提取了9种元素在室温下的体积模量及其一阶导数,并与其他已发表的研究结果进行了比较,结果吻合较好。此外,这些提取值被用于研究等温体积模量的变化,它的第一压力导数,以及等温热膨胀系数作为施加静水压力的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信