Carbon based manganese oxide (MnO2, MnO2/MWCNT and MnO2/rGO) composite electrodes for high-stability Li-ion batteries

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pitcheri Rosaiah, Ponnusamy Divya, Sangaraju Sambasivam, Ammar M. Tighezza, V. Kalaivani, A. Muthukrishnaraj, Manikandan Ayyar, Theophile Niyitanga, Haekyoung Kim
{"title":"Carbon based manganese oxide (MnO2, MnO2/MWCNT and MnO2/rGO) composite electrodes for high-stability Li-ion batteries","authors":"Pitcheri Rosaiah,&nbsp;Ponnusamy Divya,&nbsp;Sangaraju Sambasivam,&nbsp;Ammar M. Tighezza,&nbsp;V. Kalaivani,&nbsp;A. Muthukrishnaraj,&nbsp;Manikandan Ayyar,&nbsp;Theophile Niyitanga,&nbsp;Haekyoung Kim","doi":"10.1007/s42823-023-00604-1","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires (MnO<sub>2</sub> NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman and XPS analysis are utilized to examine the structural characteristics and chemical state of composites. The initial specific discharge capacity of pure MnO<sub>2</sub> NWs<sub>,</sub> MnO<sub>2</sub> NWs/MWCNT and MnO<sub>2</sub> NWs/rGO composites are 1225, 1589 and 1685 mAh/g, respectively. The MnO<sub>2</sub> NWs/MWCNT and MnO<sub>2</sub> NWs/rGO composites showed stable behavior with a specific capacity of 957 and 1108 mAh/g, respectively, after 60 cycles. Moreover, MnO<sub>2</sub> NWs/rGO composite sustained a specific capacity of 784 mAh/g, even after 250 cycles at a current density of 1 A/g showing outstanding cycling stability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 1","pages":"215 - 225"},"PeriodicalIF":5.5000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-023-00604-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires (MnO2 NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman and XPS analysis are utilized to examine the structural characteristics and chemical state of composites. The initial specific discharge capacity of pure MnO2 NWs, MnO2 NWs/MWCNT and MnO2 NWs/rGO composites are 1225, 1589 and 1685 mAh/g, respectively. The MnO2 NWs/MWCNT and MnO2 NWs/rGO composites showed stable behavior with a specific capacity of 957 and 1108 mAh/g, respectively, after 60 cycles. Moreover, MnO2 NWs/rGO composite sustained a specific capacity of 784 mAh/g, even after 250 cycles at a current density of 1 A/g showing outstanding cycling stability.

Graphical abstract

Abstract Image

Abstract Image

用于高稳定性锂离子电池的碳基氧化锰(MnO2、MnO2/MWCNT 和 MnO2/rGO)复合电极
合成能力极强的材料对于解决能量存储问题具有重大意义。本研究采用简单有效的水热法,将氧化锰纳米线(MnO2 NWs)与多壁碳纳米管(MWCNT)和氧化石墨烯(GO)原位制备。利用粉末 XRD、拉曼和 XPS 分析来研究复合材料的结构特征和化学状态。纯 MnO2 NWs、MnO2 NWs/MWCNT 和 MnO2 NWs/rGO 复合材料的初始比放电容量分别为 1225、1589 和 1685 mAh/g。MnO2 NWs/MWCNT 和 MnO2 NWs/rGO 复合材料表现出稳定的特性,60 个循环后的比容量分别为 957 和 1108 mAh/g。此外,MnO2 NWs/rGO 复合材料在电流密度为 1 A/g 的条件下循环 250 次后,比容量仍保持在 784 mAh/g 的水平,显示出出色的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信