{"title":"Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion","authors":"chenrong ling, qiang li, zhe zhang, Youwen Yang, wenhao zhou, wenlong chen, zhi dong, chunrong pan, cijun shuai","doi":"10.1088/2631-7990/acfad5","DOIUrl":null,"url":null,"abstract":"Highlights WE43 parts with favorable forming quality are fabricated by laser-beam powder bed fusion and the interaction between laser beam and powder is revealed. After suitable heat treatment, the anisotropic microstructure is eliminated, with nano-scaled Mg 24 Y 5 particles homogeneously precipitated. The yield strength and ultimate tensile strength are improved to (250.2 ± 3.5) MPa and (312 ± 3.7) MPa, respectively, while the elongation still maintains at high level of 15.2%. Homogenized microstructure inhibits the micro galvanic corrosion and promotes the development of passivation film, thus decreasing the degradation rate by an order of magnitude. The porous WE43 scaffolds offer a favorable environment for cell growth.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/acfad5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4
Abstract
Highlights WE43 parts with favorable forming quality are fabricated by laser-beam powder bed fusion and the interaction between laser beam and powder is revealed. After suitable heat treatment, the anisotropic microstructure is eliminated, with nano-scaled Mg 24 Y 5 particles homogeneously precipitated. The yield strength and ultimate tensile strength are improved to (250.2 ± 3.5) MPa and (312 ± 3.7) MPa, respectively, while the elongation still maintains at high level of 15.2%. Homogenized microstructure inhibits the micro galvanic corrosion and promotes the development of passivation film, thus decreasing the degradation rate by an order of magnitude. The porous WE43 scaffolds offer a favorable environment for cell growth.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.