Improving Diesel Engine Reliability Using an Optimal Prognostic Model to Predict Diesel Engine Emissions and Performance Using Pure Diesel and Hydrogenated Vegetable Oil
Tadas Žvirblis, Jacek Hunicz, Jonas Matijošius, Alfredas Rimkus, Artūras Kilikevičius, Michał Gęca
{"title":"Improving Diesel Engine Reliability Using an Optimal Prognostic Model to Predict Diesel Engine Emissions and Performance Using Pure Diesel and Hydrogenated Vegetable Oil","authors":"Tadas Žvirblis, Jacek Hunicz, Jonas Matijošius, Alfredas Rimkus, Artūras Kilikevičius, Michał Gęca","doi":"10.17531/ein/174358","DOIUrl":null,"url":null,"abstract":"The reliability of internal combustion engines becomes an important aspect when traditional fuels with biofuels. Therefore, the development of prognostic models becomes very important for evaluating and predicting the replacement of traditional fuels with biofuels in internal combustion engines. The models have been made to model AVL 5402 engine emission, vibration, and sound pressure parameters using a three-stage statistical regression models. The fifteen parameters might be accurately predicted by a single statistic presented here. Both fuel type (diesel fuel and HVO) and engine parameters that can be adjusted were considered, since this analysis followed the symmetry of the methods. The data analysis process included three distinct steps and symmetric statistical regression testing was performed. The algorithm examined the effectiveness of various engine settings. Finally, the optimal fixed engine parameter and the optimal statistic were used to construct an ANCOVA model. The ANCOVA model improved the accuracy of prediction for all fifteen missing parameters.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"11 4","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/174358","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability of internal combustion engines becomes an important aspect when traditional fuels with biofuels. Therefore, the development of prognostic models becomes very important for evaluating and predicting the replacement of traditional fuels with biofuels in internal combustion engines. The models have been made to model AVL 5402 engine emission, vibration, and sound pressure parameters using a three-stage statistical regression models. The fifteen parameters might be accurately predicted by a single statistic presented here. Both fuel type (diesel fuel and HVO) and engine parameters that can be adjusted were considered, since this analysis followed the symmetry of the methods. The data analysis process included three distinct steps and symmetric statistical regression testing was performed. The algorithm examined the effectiveness of various engine settings. Finally, the optimal fixed engine parameter and the optimal statistic were used to construct an ANCOVA model. The ANCOVA model improved the accuracy of prediction for all fifteen missing parameters.
期刊介绍:
The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.