Heterocyclic molecules with ESIPT emission: synthetic approaches, molecular diversities, and application strategies

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
NURETTİN MENGEŞ
{"title":"Heterocyclic molecules with ESIPT emission: synthetic approaches, molecular diversities, and application strategies","authors":"NURETTİN MENGEŞ","doi":"10.55730/1300-0527.3585","DOIUrl":null,"url":null,"abstract":"Excited-state intramolecular proton transfer (ESIPT) is one of the most essential emission processes in most circumstances because of its dual emission band in most cases and its high Stokes shifts. These distinguishing properties make ESIPT-based probes more suitable for a variety of applications, including analyte sensors, solid-state sensing mechanisms, optical technologies, and biomarkers for endogenous or exogenous compounds in various settings. As a result, researchers around the world are working on ESIPT emissions and developing different scaffolds for various applications or industry demands. This field of study is rapidly expanding and there is a need for an up-to-date review of synthesis methodologies and applications. This paper provides the highlights of ESIPT-based heterocyclic scaffolds, synthesis strategies, and application scenarios in the literature from 2017 to 2023","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0527.3585","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Excited-state intramolecular proton transfer (ESIPT) is one of the most essential emission processes in most circumstances because of its dual emission band in most cases and its high Stokes shifts. These distinguishing properties make ESIPT-based probes more suitable for a variety of applications, including analyte sensors, solid-state sensing mechanisms, optical technologies, and biomarkers for endogenous or exogenous compounds in various settings. As a result, researchers around the world are working on ESIPT emissions and developing different scaffolds for various applications or industry demands. This field of study is rapidly expanding and there is a need for an up-to-date review of synthesis methodologies and applications. This paper provides the highlights of ESIPT-based heterocyclic scaffolds, synthesis strategies, and application scenarios in the literature from 2017 to 2023
具有ESIPT发射的杂环分子:合成方法、分子多样性和应用策略
激发态分子内质子转移(ESIPT)是大多数情况下最重要的发射过程之一,因为它具有双发射带和高斯托克斯位移。这些独特的特性使得基于esipt的探针更适合各种应用,包括分析物传感器、固态传感机制、光学技术以及各种环境下内源性或外源性化合物的生物标志物。因此,世界各地的研究人员正在研究ESIPT排放,并为各种应用或工业需求开发不同的支架。这一研究领域正在迅速扩大,有必要对合成方法和应用进行最新的审查。本文综述了2017 - 2023年文献中基于esipt的杂环支架、合成策略及应用场景的研究亮点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信