Noemi Jardon-Maximino, Mariamne Dehonor Gómez, Rolando Villa Moreno, M. D. Baeza-Alvarado, Luis Edmundo Lugo Uribe
{"title":"Optimization of the Alkali-Silane Treatment of Agave lechuguilla Fibers (Ixtle) for Potential Reinforcement in Polymeric Composites","authors":"Noemi Jardon-Maximino, Mariamne Dehonor Gómez, Rolando Villa Moreno, M. D. Baeza-Alvarado, Luis Edmundo Lugo Uribe","doi":"10.3390/fib11100086","DOIUrl":null,"url":null,"abstract":"Reinforced polymeric composites with natural fibers have garnered significant interest in recent years due to the need for biomass utilization and the requirements of various industries, such as automotive and construction. Among these natural fibers, Agave lechuguilla fiber, commonly known as ixtle (FIx) or Tampico fiber, exhibits important characteristics such as length, high strength, and durability. However, there is limited literature on its conditioning, functionalization, and utilization as a reinforcing material in polymeric composites (CP). This study presents the optimization of the alkali-silane treatment of FIx, identifying the most suitable reaction conditions to enhance their thermal stability, tensile strength, and silane coupling agent (ACSi) grafting on the fiber surface. The chemical treatment with ACSi proved highly effective, resulting in a significant grafting content, which was confirmed through FTIR and SEM–EDS analyses. The high level of functionalization did not compromise the mechanical performance of the fibers, suggesting that functionalized FIx holds great potential as a reinforcing material in CP. These findings open new paths for the sustainable use of Agave lechuguilla fibers, contributing to the development of environmentally friendly and high-performance polymeric composites in various industrial applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"24 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11100086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforced polymeric composites with natural fibers have garnered significant interest in recent years due to the need for biomass utilization and the requirements of various industries, such as automotive and construction. Among these natural fibers, Agave lechuguilla fiber, commonly known as ixtle (FIx) or Tampico fiber, exhibits important characteristics such as length, high strength, and durability. However, there is limited literature on its conditioning, functionalization, and utilization as a reinforcing material in polymeric composites (CP). This study presents the optimization of the alkali-silane treatment of FIx, identifying the most suitable reaction conditions to enhance their thermal stability, tensile strength, and silane coupling agent (ACSi) grafting on the fiber surface. The chemical treatment with ACSi proved highly effective, resulting in a significant grafting content, which was confirmed through FTIR and SEM–EDS analyses. The high level of functionalization did not compromise the mechanical performance of the fibers, suggesting that functionalized FIx holds great potential as a reinforcing material in CP. These findings open new paths for the sustainable use of Agave lechuguilla fibers, contributing to the development of environmentally friendly and high-performance polymeric composites in various industrial applications.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins