José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho
{"title":"Extension of a Zero-Dimensional Mixing-Controlled Combustion Model for the Development of a NOx–Free System Based on the Oxy-Combustion Concept","authors":"José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho","doi":"10.1595/205651324x16963284171824","DOIUrl":null,"url":null,"abstract":"Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16963284171824","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.