Amelia R Cox, Barbara Frei, Sarah E Gutowsky, Frank B Baldwin, Kristin Bianchini, Christian Roy
{"title":"Sixty-years of community-science data suggest earlier fall migration and short-stopping of waterfowl in North America","authors":"Amelia R Cox, Barbara Frei, Sarah E Gutowsky, Frank B Baldwin, Kristin Bianchini, Christian Roy","doi":"10.1093/ornithapp/duad041","DOIUrl":null,"url":null,"abstract":"Abstract Worldwide, migratory phenology and movement of many bird species is shifting in response to anthropogenic climate and habitat changes. However, due to variation among species and a shortage of analyses, changes in waterfowl migration, particularly in the fall, are not well understood. Fall migration phenology and movement patterns dictate waterfowl hunting success and satisfaction, with cascading implications on economies and support for habitat management and securement. Using 60 years of band recovery data for waterfowl banded in the Canadian Prairie Pothole Region (PPR), we evaluated whether fall migration timing and/or distribution changed in Mallard (Anas platyrhynchos), Northern Pintail (A. acuta), and Blue-winged Teal (Spatula discors) between 1960 and 2019. We found that in the Midcontinent Flyways, Mallards and Blue-winged Teal migrated faster in more recent time periods, whereas Northern Pintail began fall migration earlier. In the Pacific Flyway, Mallards began fall migration earlier. Both Mallards and Northern Pintails showed evidence of short-stopping in the Midcontinent Flyways. Indeed, the Mallard and Northern Pintail distribution of band recovery data shifted 180 and 226 km north, respectively, from 1960 to 2019. Conversely, Blue-winged Teal recovery distributions were consistent across years. Mallards and Northern Pintails also exhibited an increased proportion of band recoveries in the Pacific Flyway in recent decades. We provide clear evidence that the timing and routes of fall migration have shifted over the past 6 decades, but these phenological and spatial shifts differ among species. We suggest that using community-science data collected by hunters themselves to explain one of the group’s major concerns (changes in duck abundance at traditional hunting grounds), within the environmental lens of climate change, may help lead to further engagement and two-way dialogue to support effective waterfowl management for these culturally and ecologically important species.","PeriodicalId":50624,"journal":{"name":"Condor","volume":"94 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ornithapp/duad041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Worldwide, migratory phenology and movement of many bird species is shifting in response to anthropogenic climate and habitat changes. However, due to variation among species and a shortage of analyses, changes in waterfowl migration, particularly in the fall, are not well understood. Fall migration phenology and movement patterns dictate waterfowl hunting success and satisfaction, with cascading implications on economies and support for habitat management and securement. Using 60 years of band recovery data for waterfowl banded in the Canadian Prairie Pothole Region (PPR), we evaluated whether fall migration timing and/or distribution changed in Mallard (Anas platyrhynchos), Northern Pintail (A. acuta), and Blue-winged Teal (Spatula discors) between 1960 and 2019. We found that in the Midcontinent Flyways, Mallards and Blue-winged Teal migrated faster in more recent time periods, whereas Northern Pintail began fall migration earlier. In the Pacific Flyway, Mallards began fall migration earlier. Both Mallards and Northern Pintails showed evidence of short-stopping in the Midcontinent Flyways. Indeed, the Mallard and Northern Pintail distribution of band recovery data shifted 180 and 226 km north, respectively, from 1960 to 2019. Conversely, Blue-winged Teal recovery distributions were consistent across years. Mallards and Northern Pintails also exhibited an increased proportion of band recoveries in the Pacific Flyway in recent decades. We provide clear evidence that the timing and routes of fall migration have shifted over the past 6 decades, but these phenological and spatial shifts differ among species. We suggest that using community-science data collected by hunters themselves to explain one of the group’s major concerns (changes in duck abundance at traditional hunting grounds), within the environmental lens of climate change, may help lead to further engagement and two-way dialogue to support effective waterfowl management for these culturally and ecologically important species.
期刊介绍:
The Condor is the official publication of the Cooper Ornithological Society, a non-profit organization of over 2,000 professional and amateur ornithologists and one of the largest ornithological societies in the world. A quarterly international journal that publishes original research from all fields of avian biology, The Condor has been a highly respected forum in ornithology for more than 100 years. The journal is one of the top ranked ornithology publications. Types of paper published include feature articles (longer manuscripts) Short Communications (generally shorter papers or papers that deal with one primary finding), Commentaries (brief papers that comment on articles published previously in The Condor), and Book Reviews.