– MULTIPLIERS ON COMMUTATIVE HYPERGROUPS

IF 0.5 4区 数学 Q3 MATHEMATICS
VISHVESH KUMAR, MICHAEL RUZHANSKY
{"title":"– MULTIPLIERS ON COMMUTATIVE HYPERGROUPS","authors":"VISHVESH KUMAR, MICHAEL RUZHANSKY","doi":"10.1017/s1446788723000125","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this paper is to prove Hörmander’s $L^p$ – $L^q$ boundedness of Fourier multipliers on commutative hypergroups. We carry out this objective by establishing the Paley inequality and Hausdorff–Young–Paley inequality for commutative hypergroups. We show the $L^p$ – $L^q$ boundedness of the spectral multipliers for the generalised radial Laplacian by examining our results on Chébli–Trimèche hypergroups. As a consequence, we obtain embedding theorems and time asymptotics for the $L^p$ – $L^q$ norms of the heat kernel for generalised radial Laplacian.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1446788723000125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The main purpose of this paper is to prove Hörmander’s $L^p$ – $L^q$ boundedness of Fourier multipliers on commutative hypergroups. We carry out this objective by establishing the Paley inequality and Hausdorff–Young–Paley inequality for commutative hypergroups. We show the $L^p$ – $L^q$ boundedness of the spectral multipliers for the generalised radial Laplacian by examining our results on Chébli–Trimèche hypergroups. As a consequence, we obtain embedding theorems and time asymptotics for the $L^p$ – $L^q$ norms of the heat kernel for generalised radial Laplacian.
-交换超群上的乘数
摘要本文的主要目的是证明交换超群上傅里叶乘子Hörmander的$L^p$ - $L^q$有界性。我们通过建立可交换超群的Paley不等式和Hausdorff-Young-Paley不等式来实现这一目标。通过检验ch - trim -切超群的结果,我们证明了广义径向拉普拉斯算子的谱乘子的有界性。因此,我们得到了广义径向拉普拉斯热核的L^p$ - L^q$范数的嵌入定理和时间渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信