The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly

IF 4.9 Q1 BIOPHYSICS
Sifiso Duncan Luthuli, Addmore Shonhai
{"title":"The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly","authors":"Sifiso Duncan Luthuli, Addmore Shonhai","doi":"10.1007/s12551-023-01127-9","DOIUrl":null,"url":null,"abstract":"Abstract Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100–450 g/L that take up approximately 5–40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure–function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01127-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100–450 g/L that take up approximately 5–40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure–function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
R2TP复合体在基因表达、翻译和蛋白质功能组装方面发挥着多方面的作用
大分子复合物在各种细胞过程中起着重要作用。细胞内大分子组件的组装必须克服拥挤的细胞环境所施加的障碍,其特征是生物大分子的估计浓度达100-450克/升,约占细胞质体积的5-40%。分子伴侣和它们的共同伴侣促进了大分子组装的形成。R2TP蛋白复合物作为Hsp90的合作伴侣出现,在大分子组装中起重要作用。R2TP复合体由RPAP3的异源二聚体:P1H1DI组成,该复合体又与与多种细胞活性(AAA +), RUVBL1和RUVBL2 (R1和R2)家族相关的atp酶成员络合。R2TP共伴侣复合物之所以特别重要,是因为它参与了多种细胞过程,包括基因表达、翻译、共翻译复合物组装和翻译后蛋白质复合物的形成。R2TP共伴侣复合物的多功能性使其成为细胞发育的核心;因此,它与各种人类疾病有关。此外,它们在传染病病原体发展中的作用也引起了人们的兴趣。在这篇综述中,我们讨论了这些蛋白作为调控Hsp90及其与Hsp70的合作伙伴的作用。此外,我们强调了R2TP复合体中单个蛋白质的结构功能特征,并描述了它们在各种细胞过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信