Extremal Tensor Products of Demazure Crystals

Pub Date : 2023-09-12 DOI:10.1007/s10468-023-10231-z
Sami Assaf, Anne Dranowski, Nicolle González
{"title":"Extremal Tensor Products of Demazure Crystals","authors":"Sami Assaf,&nbsp;Anne Dranowski,&nbsp;Nicolle González","doi":"10.1007/s10468-023-10231-z","DOIUrl":null,"url":null,"abstract":"<div><p>Demazure crystals are subcrystals of highest weight irreducible <span>\\(\\mathfrak {g}\\)</span>-crystals. In this article, we study tensor products of a larger class of subcrystals, called extremal, and give a local characterization for exactly when the tensor product of Demazure crystals is extremal. We then show that tensor products of Demazure crystals decompose into direct sums of Demazure crystals if and only if the tensor product is extremal, thus providing a sufficient and necessary local criterion for when the tensor product of Demazure crystals is itself Demazure. As an application, we show that the primary component in the tensor square of any Demazure crystal is always Demazure.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-023-10231-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10231-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Demazure crystals are subcrystals of highest weight irreducible \(\mathfrak {g}\)-crystals. In this article, we study tensor products of a larger class of subcrystals, called extremal, and give a local characterization for exactly when the tensor product of Demazure crystals is extremal. We then show that tensor products of Demazure crystals decompose into direct sums of Demazure crystals if and only if the tensor product is extremal, thus providing a sufficient and necessary local criterion for when the tensor product of Demazure crystals is itself Demazure. As an application, we show that the primary component in the tensor square of any Demazure crystal is always Demazure.

分享
查看原文
德马祖尔晶体的极值张量乘积
Demazure晶体是最高权重不可还原(\mathfrak {g}\)晶体的子晶体。在这篇文章中,我们研究了一类更大的子晶体(称为极值晶体)的张量积,并给出了 Demazure 晶体的张量积何时为极值晶体的局部特征。然后,我们证明了当且仅当 Demazure 晶体的张量积为极值时,该晶体的张量积才会分解为 Demazure 晶体的直接和,从而为 Demazure 晶体的张量积本身何时为 Demazure 晶体提供了一个充分且必要的局部判据。作为应用,我们证明了任何 Demazure 晶体的张量平方中的主成分总是 Demazure 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信